take home quiz

Overview

guess the correlation

data inspection

a pretty normal distribution

dist

train/val/test split

splitting amount

.dataset:                150000 instances
├─80%─├─80%─training      96000 instances
│     └─20%─validation    24000 instances
├─20%─testing             30000 instances

after a rough glance at the dataset distribution, considered the dataset is pretty normal distributed and has enough instances to keep the variance low after 80/20 splitting.

splitting method

def _split_dataset(self, split, training=True):
    if split == 0.0:
        return None, None

    # self.correlations_frame = pd.read_csv('path/to/csv_file')
    n_samples = len(self.correlations_frame)

    idx_full = np.arange(n_samples)

    # fix seed for referenceable testing set
    np.random.seed(0)
    np.random.shuffle(idx_full)

    if isinstance(split, int):
        assert split > 0
        assert split < n_samples, "testing set size is configured to be larger than entire dataset."
        len_test = split
    else:
        len_test = int(n_samples * split)

    test_idx = idx_full[0:len_test]
    train_idx = np.delete(idx_full, np.arange(0, len_test))

    if training:
        dataset = self.correlations_frame.ix[train_idx]
    else:
        dataset = self.correlations_frame.ix[test_idx]

    return dataset

training/validation splitting uses the same logic

model inspection

CorrelationModel(
  (features): Sequential(
    (0): Conv2d(1, 16, kernel_size=(3, 3), stride=(2, 2), padding=(2, 2))
    #(0): params: (3*3*1+1) * 16 = 160
    (1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    #(1): params: 16 * 2 = 32
    (2): ReLU(inplace=True)
    (3): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
    (4): Conv2d(16, 32, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2))
    #(4): params: (3*3*16+1) * 32 = 4640
    (5): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    #(5): params: 32 * 2 = 64
    (6): ReLU(inplace=True)
    (7): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
    (8): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    #(8): params: (3*3*32+1) * 64 = 18496
    (9): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    #(9): params: 64 * 2 = 128
    (10): ReLU(inplace=True)
    (11): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
    (12): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    #(12): params: (3*3*64+1) * 32 = 18464
    (13): ReLU(inplace=True)
    (14): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
    (15): Conv2d(32, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (#15): params: (3*3*32+1) * 16 = 4624
    (16): ReLU(inplace=True)
    (17): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
    (18): Conv2d(16, 8, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (#18): params: (3*3*16+1) * 8 = 1160
    (19): ReLU(inplace=True)
  )
  (avgpool): AdaptiveAvgPool2d(output_size=(1, 1))
  (linear): Sequential(
    (0): Conv2d(8, 1, kernel_size=(1, 1), stride=(1, 1))
    #(0): params: (8+1) * 1 = 9
    (1): Tanh()
  )
)
Trainable parameters: 47777

loss function

the loss function of choice is smooth_l1, which has the advantages of both l1 and l2 loss

def SmoothL1(yhat, y):                                                  <--- final choice
    return torch.nn.functional.smooth_l1_loss(yhat, y)

def MSELoss(yhat, y):
    return torch.nn.functional.mse_loss(yhat, y)

def RMSELoss(yhat, y):
    return torch.sqrt(MSELoss(yhat, y))

def MSLELoss(yhat, y):
    return MSELoss(torch.log(yhat + 1), torch.log(y + 1))

def RMSLELoss(yhat, y):
    return torch.sqrt(MSELoss(torch.log(yhat + 1), torch.log(y + 1)))

evaluation metric

def mse(output, target):
    # mean square error
    with torch.no_grad():
        assert output.shape[0] == len(target)
        mae = torch.sum(MSELoss(output, target)).item()
    return mae / len(target)

def mae(output, target):
    # mean absolute error
    with torch.no_grad():
        assert output.shape[0] == len(target)
        mae = torch.sum(abs(target-output)).item()
    return mae / len(target)

def mape(output, target):
    # mean absolute percentage error
    with torch.no_grad():
        assert output.shape[0] == len(target)
        mape = torch.sum(abs((target-output)/target)).item()
    return mape / len(target)

def rmse(output, target):
    # root mean square error
    with torch.no_grad():
        assert output.shape[0] == len(target)
        rmse = torch.sum(torch.sqrt(MSELoss(output, target))).item()
    return rmse / len(target)

def msle(output, target):
    # mean square log error
    with torch.no_grad():
        assert output.shape[0] == len(target)
        msle = torch.sum(MSELoss(torch.log(output + 1), torch.log(target + 1))).item()
    return msle / len(target)

def rmsle(output, target):
    # root mean square log error
    with torch.no_grad():
        assert output.shape[0] == len(target)
        rmsle = torch.sum(torch.sqrt(MSELoss(torch.log(output + 1), torch.log(target + 1)))).item()
    return rmsle / len(target)

training result

trainer - INFO -     epoch          : 1
trainer - INFO -     smooth_l1loss  : 0.0029358651146370296
trainer - INFO -     mse            : 9.174910654958997e-05
trainer - INFO -     mae            : 0.04508562459920844
trainer - INFO -     mape           : 0.6447089369893074
trainer - INFO -     rmse           : 0.0008826211761528006
trainer - INFO -     msle           : 0.0002885178522810747
trainer - INFO -     rmsle          : 0.0016459243478796756
trainer - INFO -     val_loss       : 0.000569225614812846
trainer - INFO -     val_mse        : 1.7788300462901436e-05
trainer - INFO -     val_mae        : 0.026543946107228596
trainer - INFO -     val_mape       : 0.48582320946455004
trainer - INFO -     val_rmse       : 0.0005245986936303476
trainer - INFO -     val_msle       : 9.091730712680146e-05
trainer - INFO -     val_rmsle      : 0.0009993902465794235
                    .
                    .
                    .
                    .
                    .
                    .
trainer - INFO -     epoch          : 7                           <--- final model
trainer - INFO -     smooth_l1loss  : 0.00017805844737449661
trainer - INFO -     mse            : 5.564326480453019e-06
trainer - INFO -     mae            : 0.01469234253714482
trainer - INFO -     mape           : 0.2645472921580076
trainer - INFO -     rmse           : 0.0002925463738307978
trainer - INFO -     msle           : 3.3151906652316634e-05
trainer - INFO -     rmsle          : 0.0005688522928685416
trainer - INFO -     val_loss       : 0.00017794455110561102
trainer - INFO -     val_mse        : 5.560767222050344e-06
trainer - INFO -     val_mae        : 0.014510956528286139
trainer - INFO -     val_mape       : 0.25059283276398975
trainer - INFO -     val_rmse       : 0.0002930224982944007
trainer - INFO -     val_msle       : 3.403802761204133e-05
trainer - INFO -     val_rmsle      : 0.0005525556141122554
trainer - INFO - Saving checkpoint: saved/models/correlation/1031_043742/checkpoint-epoch7.pth ...
trainer - INFO - Saving current best: model_best.pth ...
                    .
                    .
                    .
                    .
                    .
                    .
trainer - INFO -     epoch          : 10                           <--- early stop
trainer - INFO -     smooth_l1loss  : 0.00014610137016279624
trainer - INFO -     mse            : 4.565667817587382e-06
trainer - INFO -     mae            : 0.013266990386570494
trainer - INFO -     mape           : 0.24146838792661826
trainer - INFO -     rmse           : 0.00026499629460158757
trainer - INFO -     msle           : 2.77259079665176e-05
trainer - INFO -     rmsle          : 0.0005148174095957074
trainer - INFO -     val_loss       : 0.00018394086218904705
trainer - INFO -     val_mse        : 5.74815194340772e-06
trainer - INFO -     val_mae        : 0.01494487459709247
trainer - INFO -     val_mape       : 0.27262411576509477
trainer - INFO -     val_rmse       : 0.0002979971170425415
trainer - INFO -     val_msle       : 3.1850282267744966e-05
trainer - INFO -     val_rmsle      : 0.0005451643197642019
trainer - INFO - Validation performance didn't improve for 2 epochs. Training stops.

loss graph dist

testing result

Loading checkpoint: saved/models/correlation/model_best.pth ...
Done
Testing set samples: 30000
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 59/59 [00:19<00:00,  3.04it/s]
Testing result:
{'loss': 0.0001722179292468354, 'mse': 6.77461177110672e-07, 'mae': 0.014289384969075522, 'mape': 0.2813985677083333, 'rmse': 3.6473782857259115e-05, 'msle': 3.554690380891164e-06, 'rmsle': 7.881066799163819e-05}
Owner
HR Wu
HR Wu
《赛马娘》(ウマ娘: Pretty Derby)辅助 🐎🖥 基于 auto-derby 可视化操作/设置 启动器 一键包

ok-derby 《赛马娘》(ウマ娘: Pretty Derby)辅助 🐎 🖥 基于 auto-derby 可视化操作/设置 启动器 一键包 便捷,好用的 auto_derby 管理器! 功能 支持客户端 DMM (前台) 实验性 安卓 ADB 连接(后台)开发基于 1080x1920 分辨率

秋葉あんず 90 Jan 01, 2023
Run-Your-Own Firefox Sync Server

Run-Your-Own Firefox Sync Server This is an all-in-one package for running a self-hosted Firefox Sync server. It bundles the "tokenserver" project for

Mozilla Services 1.7k Dec 30, 2022
Unofficial Python Library to communicate with SESAME 3 series products from CANDY HOUSE, Inc.

pysesame3 Unofficial Python Library to communicate with SESAME 3 series products from CANDY HOUSE, Inc. This project aims to control SESAME 3 series d

Masaki Tagawa 18 Dec 12, 2022
Generate a wordlist to fuzz amounts or any other numerical values.

Generate a wordlist to fuzz amounts or any other numerical values. Based on Common Security Issues in Financially-Oriented Web Applications.

Ivan Šincek 3 Oct 14, 2022
Python communism - A module for initiating the communist revolution in each of our python modules

Python communist revolution A man once said to abolish the classes or something

758 Jan 03, 2023
Web UI for your scripts with execution management

Script-server is a Web UI for scripts. As an administrator, you add your existing scripts into Script server and other users would be ab

Iaroslav Shepilov 1.1k Jan 09, 2023
K2HASH Python library - NoSQL Key Value Store(KVS) library

k2hash_python Overview k2hash_python is an official python driver for k2hash. Install Firstly you must install the k2hash shared library: curl -o- htt

Yahoo! JAPAN 3 Oct 19, 2022
Plock : A stack based programming language

Plock : A stack based programming language

1 Oct 25, 2021
India's own RPA Platform Python Powered

Welcome to My-AutoPylot , Made in India with ❤️ What is My-AutoPylot? PyBots is an Indian firm based in Vadodara, Gujarat. My-AutoPylot is a product d

PyBots Pvt Ltd 28 Sep 12, 2022
Location of public benchmarking; primarily final results

CSL_public_benchmark This repo is intended to provide a periodically-updated, public view into genome sequencing benchmarks managed by HudsonAlpha's C

HudsonAlpha Institute for Biotechnology 15 Jun 13, 2022
sawa (ꦱꦮ) is an open source programming language, an interpreter to be precise, where you can write python code using javanese character.

ꦱꦮ sawa (ꦱꦮ) is an open source programming language, an interpreter to be precise, where you can write python code using javanese character. sawa iku

Rony Lantip 307 Jan 07, 2023
MIT version of the PyMca XRF Toolkit

PyMca This is the MIT version of the PyMca XRF Toolkit. Please read the LICENSE file for details. Installation Ready-to-use packages are available for

V. Armando Solé 43 Nov 23, 2022
Includes Chapters for Python Crash Course session.

python-crash-course Includes Chapters for Python Crash Course session. What will you learn: Python Essentials Creating Server Writing REST API Writing

Vineet Rao 3 Feb 17, 2021
A tool converting rpk (记乎) to apkg (Anki Package)

RpkConverter This tool is used to convert rpk file to Anki apkg. 如果遇到任何问题,请发起issue,并描述情况。如果转换rpk出现问题,请将文件发到邮箱 ssqyang [AT] outlook.com,我会debug并修复问题。 下

9 Nov 01, 2021
This program generates automatically new folders containing old version of program

Automated Folder Versions Generator by Sergiy Grimoldi - V.0.0.2 This program generates automatically new folders containing old version of something

Sergiy Grimoldi 1 Dec 23, 2021
Analyzes crypto candles over a set time period and then trades based on winning patterns found

patternstrade Analyzes crypto candles over a set time period and then trades based on winning patterns found. Heavily customizable. Warning: This was

ConnorCreate 14 May 29, 2022
The bidirectional mapping library for Python.

bidict The bidirectional mapping library for Python. Status bidict: has been used for many years by several teams at Google, Venmo, CERN, Bank of Amer

Joshua Bronson 1.2k Dec 31, 2022
Python library to natively send files to Trash (or Recycle bin) on all platforms.

Send2Trash -- Send files to trash on all platforms Send2Trash is a small package that sends files to the Trash (or Recycle Bin) natively and on all pl

Andrew Senetar 224 Jan 04, 2023
Open slidebook .sldy files in Python

Work in progress slidebook-python Open slidebook .sldy files in Python To install slidebook-python requires Python = 3.9 pip install slidebook-python

The Institute of Cancer Research 2 May 04, 2022
Learning a Little about Containerlab

Learning a Little about Containerlab Hello all. This is the respository based on this blog post. Getting Started Feel free to use this example. You wi

10 Oct 16, 2022