Tensors and neural networks in Haskell

Overview

Hasktorch

Hasktorch is a library for tensors and neural networks in Haskell. It is an independent open source community project which leverages the core C++ libraries shared by PyTorch.

This project is in active development, so expect changes to the library API as it evolves. We would like to invite new users to join our Hasktorch slack space for questions and discussions. Contributions/PR are encouraged.

Currently we are developing the second major release of Hasktorch (0.2). Note the 1st release, Hasktorch 0.1, on hackage is outdated and should not be used.

Documentation

The documentation is divided into several sections:

Introductory Videos

Getting Started

The following steps will get you started. They assume the hasktorch repository has just been cloned. After setup is done, read the online tutorials and API documents.

linux+cabal+cpu

Starting from the top-level directory of the project, run:

$ pushd deps       # Change to the deps directory and save the current directory.
$ ./get-deps.sh    # Run the shell script to retrieve the libtorch dependencies.
$ popd             # Go back to the root directory of the project.
$ source setenv    # Set the shell environment to reference the shared library locations.
$ ./setup-cabal.sh # Create a cabal project file

To build and test the Hasktorch library, run:

$ cabal build hasktorch  # Build the Hasktorch library.
$ cabal test hasktorch   # Build and run the Hasktorch library test suite.

To build and test the example executables shipped with hasktorch, run:

$ cabal build examples  # Build the Hasktorch examples.
$ cabal test examples   # Build and run the Hasktorch example test suites.

To run the MNIST CNN example, run:

$ cd examples                   # Change to the examples directory.
$ ./datasets/download-mnist.sh  # Download the MNIST dataset.
$ mv mnist data                 # Move the MNIST dataset to the data directory.
$ export DEVICE=cpu             # Set device to CPU for the MNIST CNN example.
$ cabal run static-mnist-cnn    # Run the MNIST CNN example.

linux+cabal+cuda11

Starting from the top-level directory of the project, run:

$ pushd deps              # Change to the deps directory and save the current directory.
$ ./get-deps.sh -a cu111  # Run the shell script to retrieve the libtorch dependencies.
$ popd                    # Go back to the root directory of the project.
$ source setenv           # Set the shell environment to reference the shared library locations.
$ ./setup-cabal.sh        # Create a cabal project file

To build and test the Hasktorch library, run:

$ cabal build hasktorch  # Build the Hasktorch library.
$ cabal test hasktorch   # Build and run the Hasktorch library test suite.

To build and test the example executables shipped with hasktorch, run:

$ cabal build examples  # Build the Hasktorch examples.
$ cabal test examples   # Build and run the Hasktorch example test suites.

To run the MNIST CNN example, run:

$ cd examples                   # Change to the examples directory.
$ ./datasets/download-mnist.sh  # Download the MNIST dataset.
$ mv mnist data                 # Move the MNIST dataset to the data directory.
$ export DEVICE="cuda:0"        # Set device to CUDA for the MNIST CNN example.
$ cabal run static-mnist-cnn    # Run the MNIST CNN example.

macos+cabal+cpu

Starting from the top-level directory of the project, run:

$ pushd deps       # Change to the deps directory and save the current directory.
$ ./get-deps.sh    # Run the shell script to retrieve the libtorch dependencies.
$ popd             # Go back to the root directory of the project.
$ source setenv    # Set the shell environment to reference the shared library locations.
$ ./setup-cabal.sh # Create a cabal project file

To build and test the Hasktorch library, run:

$ cabal build hasktorch  # Build the Hasktorch library.
$ cabal test hasktorch   # Build and run the Hasktorch library test suite.

To build and test the example executables shipped with hasktorch, run:

$ cabal build examples  # Build the Hasktorch examples.
$ cabal test examples   # Build and run the Hasktorch example test suites.

To run the MNIST CNN example, run:

$ cd examples                   # Change to the examples directory.
$ ./datasets/download-mnist.sh  # Download the MNIST dataset.
$ mv mnist data                 # Move the MNIST dataset to the data directory.
$ export DEVICE=cpu             # Set device to CPU for the MNIST CNN example.
$ cabal run static-mnist-cnn    # Run the MNIST CNN example.

linux+stack+cpu

Install the Haskell Tool Stack if you haven't already, following instructions here

Starting from the top-level directory of the project, run:

$ pushd deps     # Change to the deps directory and save the current directory.
$ ./get-deps.sh  # Run the shell script to retrieve the libtorch dependencies.
$ popd           # Go back to the root directory of the project.
$ source setenv  # Set the shell environment to reference the shared library locations.

To build and test the Hasktorch library, run:

$ stack build hasktorch  # Build the Hasktorch library.
$ stack test hasktorch   # Build and run the Hasktorch library test suite.

To build and test the example executables shipped with hasktorch, run:

$ stack build examples  # Build the Hasktorch examples.
$ stack test examples   # Build and run the Hasktorch example test suites.

To run the MNIST CNN example, run:

$ cd examples                   # Change to the examples directory.
$ ./datasets/download-mnist.sh  # Download the MNIST dataset.
$ mv mnist data                 # Move the MNIST dataset to the data directory.
$ export DEVICE=cpu             # Set device to CPU for the MNIST CNN example.
$ stack run static-mnist-cnn     # Run the MNIST CNN example.

macos+stack+cpu

Install the Haskell Tool Stack if you haven't already, following instructions here

Starting from the top-level directory of the project, run:

$ pushd deps     # Change to the deps directory and save the current directory.
$ ./get-deps.sh  # Run the shell script to retrieve the libtorch dependencies.
$ popd           # Go back to the root directory of the project.
$ source setenv  # Set the shell environment to reference the shared library locations.

To build and test the Hasktorch library, run:

$ stack build hasktorch  # Build the Hasktorch library.
$ stack test hasktorch   # Build and run the Hasktorch library test suite.

To build and test the example executables shipped with hasktorch, run:

$ stack build examples  # Build the Hasktorch examples.
$ stack test examples   # Build and run the Hasktorch example test suites.

To run the MNIST CNN example, run:

$ cd examples                   # Change to the examples directory.
$ ./datasets/download-mnist.sh  # Download the MNIST dataset.
$ mv mnist data                 # Move the MNIST dataset to the data directory.
$ export DEVICE=cpu             # Set device to CPU for the MNIST CNN example.
$ stack run static-mnist-cnn     # Run the MNIST CNN example.

nixos+cabal+cpu

(Optional) Install and set up Cachix:

$ nix-env -iA cachix -f https://cachix.org/api/v1/install  # (Optional) Install Cachix.
$ cachix use iohk                                          # (Optional) Use IOHK's cache.
$ cachix use hasktorch                                     # (Optional) Use hasktorch's cache.

Starting from the top-level directory of the project, run:

$ nix-shell  # Enter the nix shell environment for Hasktorch.

To build and test the Hasktorch library, run:

$ cabal build hasktorch  # Build the Hasktorch library.
$ cabal test hasktorch   # Build and run the Hasktorch library test suite.

To build and test the example executables shipped with hasktorch, run:

$ cabal build examples  # Build the Hasktorch examples.
$ cabal test examples   # Build and run the Hasktorch example test suites.

To run the MNIST CNN example, run:

$ cd examples                   # Change to the examples directory.
$ ./datasets/download-mnist.sh  # Download the MNIST dataset.
$ mv mnist data                 # Move the MNIST dataset to the data directory.
$ export DEVICE=cpu             # Set device to CPU for the MNIST CNN example.
$ cabal run static-mnist-cnn    # Run the MNIST CNN example.

nixos+cabal+cuda11

(Optional) Install and set up Cachix:

$ nix-env -iA cachix -f https://cachix.org/api/v1/install  # (Optional) Install Cachix.
$ cachix use iohk                                          # (Optional) Use IOHK's cache.
$ cachix use hasktorch                                     # (Optional) Use hasktorch's cache.

Starting from the top-level directory of the project, run:

$ nix-shell --arg cudaSupport true --argstr cudaMajorVersion 11  # Enter the nix shell environment for Hasktorch.

To build and test the Hasktorch library, run:

$ cabal build hasktorch  # Build the Hasktorch library.
$ cabal test hasktorch   # Build and run the Hasktorch library test suite.

To build and test the example executables shipped with hasktorch, run:

$ cabal build examples  # Build the Hasktorch examples.
$ cabal test examples   # Build and run the Hasktorch example test suites.

To run the MNIST CNN example, run:

$ cd examples                   # Change to the examples directory.
$ ./datasets/download-mnist.sh  # Download the MNIST dataset.
$ mv mnist data                 # Move the MNIST dataset to the data directory.
$ export DEVICE="cuda:0"        # Set device to CUDA for the MNIST CNN example.
$ cabal run static-mnist-cnn    # Run the MNIST CNN example.

docker+jupyterlab+cuda11

This dockerhub repository provides the docker-image of jupyterlab. It supports cuda11, cuda10 and cpu only. When you use jupyterlab with hasktorch, type following command, then click a url in a console.

$ docker run --gpus all -it --rm -p 8888:8888 htorch/hasktorch-jupyter
or
$ docker run --gpus all -it --rm -p 8888:8888 htorch/hasktorch-jupyter:latest-cu11

Known Issues

Tensors Cannot Be Moved to CUDA

In rare cases, you may see errors like

cannot move tensor to "CUDA:0"

although you have CUDA capable hardware in your machine and have followed the getting-started instructions for CUDA support.

If that happens, check if /run/opengl-driver/lib exists. If not, make sure your CUDA drivers are installed correctly.

Weird Behaviour When Switching from CPU-Only to CUDA-Enabled Nix Shell

If you have run cabal in a CPU-only Hasktorch Nix shell before, you may need to:

  • Clean the dist-newstyle folder using cabal clean.
  • Delete the .ghc.environment* file in the Hasktorch root folder.

Otherwise, at best, you will not be able to move tensors to CUDA, and, at worst, you will see weird linker errors like

gcc: error: hasktorch/dist-newstyle/build/x86_64-linux/ghc-8.8.3/libtorch-ffi-1.5.0.0/build/Torch/Internal/Unmanaged/Autograd.dyn_o: No such file or directory
`cc' failed in phase `Linker'. (Exit code: 1)

Contributing

We welcome new contributors.

Contact us for access to the hasktorch slack channel. You can send an email to [email protected] or on twitter as @austinvhuang, @SamStites, @tscholak, or @junjihashimoto3.

Notes for library developers

See the wiki for developer notes.

Project Folder Structure

Basic functionality:

  • deps/ - submodules and downloads for build dependencies (libtorch, mklml, pytorch) -- you can ignore this if you are on Nix
  • examples/ - high level example models (xor mlp, typed cnn, etc.)
  • experimental/ - experimental projects or tips
  • hasktorch/ - higher level user-facing library, calls into ffi/, used by examples/

Internals (for contributing developers):

  • codegen/ - code generation, parses Declarations.yaml spec from pytorch and produces ffi/ contents
  • inline-c/ - submodule to inline-cpp fork used for C++ FFI
  • libtorch-ffi/- low level FFI bindings to libtorch
  • spec/ - specification files used for codegen/
Easy and Efficient Object Detector

EOD Easy and Efficient Object Detector EOD (Easy and Efficient Object Detection) is a general object detection model production framework. It aim on p

381 Jan 01, 2023
DeepLM: Large-scale Nonlinear Least Squares on Deep Learning Frameworks using Stochastic Domain Decomposition (CVPR 2021)

DeepLM DeepLM: Large-scale Nonlinear Least Squares on Deep Learning Frameworks using Stochastic Domain Decomposition (CVPR 2021) Run Please install th

Jingwei Huang 130 Dec 02, 2022
Official Pytorch implementation of 'RoI Tanh-polar Transformer Network for Face Parsing in the Wild.'

Official Pytorch implementation of 'RoI Tanh-polar Transformer Network for Face Parsing in the Wild.'

Jie Shen 125 Jan 08, 2023
Code for KDD'20 "Generative Pre-Training of Graph Neural Networks"

GPT-GNN: Generative Pre-Training of Graph Neural Networks GPT-GNN is a pre-training framework to initialize GNNs by generative pre-training. It can be

Ziniu Hu 346 Dec 19, 2022
Unofficial PyTorch code for BasicVSR

Dependencies and Installation The code is based on BasicSR, Please install the BasicSR framework first. Pytorch=1.51 Training cd ./code CUDA_VISIBLE_

Long 59 Dec 06, 2022
StyleGAN2-ada for practice

This version of the newest PyTorch-based StyleGAN2-ada is intended mostly for fellow artists, who rarely look at scientific metrics, but rather need a working creative tool. Tested on Python 3.7 + Py

vadim epstein 170 Nov 16, 2022
End-To-End Crowdsourcing

End-To-End Crowdsourcing Comparison of traditional crowdsourcing approaches to a state-of-the-art end-to-end crowdsourcing approach LTNet on sentiment

Andreas Koch 1 Mar 06, 2022
DeepFashion2 is a comprehensive fashion dataset.

DeepFashion2 Dataset DeepFashion2 is a comprehensive fashion dataset. It contains 491K diverse images of 13 popular clothing categories from both comm

switchnorm 1.8k Jan 07, 2023
A Python toolbox to create adversarial examples that fool neural networks in PyTorch, TensorFlow, and JAX

Foolbox Native: Fast adversarial attacks to benchmark the robustness of machine learning models in PyTorch, TensorFlow, and JAX Foolbox is a Python li

Bethge Lab 2.4k Dec 25, 2022
A collection of awesome resources image-to-image translation.

awesome image-to-image translation A collection of resources on image-to-image translation. Contributing If you think I have missed out on something (

876 Dec 28, 2022
Fuzzing JavaScript Engines with Aspect-preserving Mutation

DIE Repository for "Fuzzing JavaScript Engines with Aspect-preserving Mutation" (in S&P'20). You can check the paper for technical details. Environmen

gts3.org (<a href=[email protected])"> 190 Dec 11, 2022
Tools for manipulating UVs in the Blender viewport.

UV Tool Suite for Blender A set of tools to make editing UVs easier in Blender. These tools can be accessed wither through the Kitfox - UV panel on th

35 Oct 29, 2022
Cross-platform-profile-pic-changer - Script to change profile pictures across multiple platforms

cross-platform-profile-pic-changer script to change profile pictures across mult

4 Jan 17, 2022
PyTorch version repo for CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes

Study-CSRNet-pytorch This is the PyTorch version repo for CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes

0 Mar 01, 2022
Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network.

Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network

111 Dec 27, 2022
PyTorch implementation of the TTC algorithm

Trust-the-Critics This repository is a PyTorch implementation of the TTC algorithm and the WGAN misalignment experiments presented in Trust the Critic

0 Nov 29, 2021
Sound-guided Semantic Image Manipulation - Official Pytorch Code (CVPR 2022)

🔉 Sound-guided Semantic Image Manipulation (CVPR2022) Official Pytorch Implementation Sound-guided Semantic Image Manipulation IEEE/CVF Conference on

CVLAB 58 Dec 28, 2022
The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

machen 11 Nov 27, 2022
Official implementation for "Image Quality Assessment using Contrastive Learning"

Image Quality Assessment using Contrastive Learning Pavan C. Madhusudana, Neil Birkbeck, Yilin Wang, Balu Adsumilli and Alan C. Bovik This is the offi

Pavan Chennagiri 67 Dec 30, 2022
Pytorch implementation of NeurIPS 2021 paper: Geometry Processing with Neural Fields.

Geometry Processing with Neural Fields Pytorch implementation for the NeurIPS 2021 paper: Geometry Processing with Neural Fields Guandao Yang, Serge B

Guandao Yang 162 Dec 16, 2022