Full text search for flask.

Overview

flask-msearch

https://img.shields.io/badge/pypi-v0.2.9-brightgreen.svg https://img.shields.io/badge/python-2/3-brightgreen.svg https://img.shields.io/badge/license-BSD-blue.svg

Installation

To install flask-msearch:

pip install flask-msearch
# when MSEARCH_BACKEND = "whoosh"
pip install whoosh blinker
# when MSEARCH_BACKEND = "elasticsearch", only for 6.x.x
pip install elasticsearch==6.3.1

Or alternatively, you can download the repository and install manually by doing:

git clone https://github.com/honmaple/flask-msearch
cd flask-msearch
python setup.py install

Quickstart

from flask_msearch import Search
[...]
search = Search()
search.init_app(app)

# models.py
class Post(db.Model):
    __tablename__ = 'post'
    __searchable__ = ['title', 'content']

# views.py
@app.route("/search")
def w_search():
    keyword = request.args.get('keyword')
    results = Post.query.msearch(keyword,fields=['title'],limit=20).filter(...)
    # or
    results = Post.query.filter(...).msearch(keyword,fields=['title'],limit=20).filter(...)
    # elasticsearch
    keyword = "title:book AND content:read"
    # more syntax please visit https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-query-string-query.html
    results = Post.query.msearch(keyword,limit=20).filter(...)
    return ''

Config

# when backend is elasticsearch, MSEARCH_INDEX_NAME is unused
# flask-msearch will use table name as elasticsearch index name unless set __msearch_index__
MSEARCH_INDEX_NAME = 'msearch'
# simple,whoosh,elaticsearch, default is simple
MSEARCH_BACKEND = 'whoosh'
# table's primary key if you don't like to use id, or set __msearch_primary_key__ for special model
MSEARCH_PRIMARY_KEY = 'id'
# auto create or update index
MSEARCH_ENABLE = True
# logger level, default is logging.WARNING
MSEARCH_LOGGER = logging.DEBUG
# SQLALCHEMY_TRACK_MODIFICATIONS must be set to True when msearch auto index is enabled
SQLALCHEMY_TRACK_MODIFICATIONS = True
# when backend is elasticsearch
ELASTICSEARCH = {"hosts": ["127.0.0.1:9200"]}

Usage

from flask_msearch import Search
[...]
search = Search()
search.init_app(app)

class Post(db.Model):
    __tablename__ = 'basic_posts'
    __searchable__ = ['title', 'content']

    id = db.Column(db.Integer, primary_key=True)
    title = db.Column(db.String(49))
    content = db.Column(db.Text)

    def __repr__(self):
        return '<Post:{}>'.format(self.title)

if raise sqlalchemy ValueError,please pass db param to Search

db = SQLalchemy()
search = Search(db=db)

Create_index

search.create_index()
search.create_index(Post)

Update_index

search.update_index()
search.update_index(Post)
# or
search.create_index(update=True)
search.create_index(Post, update=True)

Delete_index

search.delete_index()
search.delete_index(Post)
# or
search.create_index(delete=True)
search.create_index(Post, delete=True)

Custom Analyzer

only for whoosh backend

from jieba.analyse import ChineseAnalyzer
search = Search(analyzer=ChineseAnalyzer())

or use __msearch_analyzer__ for special model

class Post(db.Model):
    __tablename__ = 'post'
    __searchable__ = ['title', 'content', 'tag.name']
    __msearch_analyzer__ = ChineseAnalyzer()

Custom index name

If you want to set special index name for some model.

class Post(db.Model):
    __tablename__ = 'post'
    __searchable__ = ['title', 'content', 'tag.name']
    __msearch_index__ = "post111"

Custom schema

from whoosh.fields import ID

class Post(db.Model):
    __tablename__ = 'post'
    __searchable__ = ['title', 'content', 'tag.name']
    __msearch_schema__ = {'title': ID(stored=True, unique=True), 'content': 'text'}

Note: if you use hybrid_property, default field type is Text unless set special __msearch_schema__

Custom parser

from whoosh.qparser import MultifieldParser

class Post(db.Model):
    __tablename__ = 'post'
    __searchable__ = ['title', 'content']

    def _parser(fieldnames, schema, group, **kwargs):
        return MultifieldParser(fieldnames, schema, group=group, **kwargs)

    __msearch_parser__ = _parser

Note: Only for MSEARCH_BACKEND is whoosh

Custom index signal

flask-msearch uses flask signal to update index by default, if you want to use other asynchronous tools such as celey to update index, please set special MSEARCH_INDEX_SIGNAL

# app.py
app.config["MSEARCH_INDEX_SIGNAL"] = celery_signal
# or use string as variable
app.config["MSEARCH_INDEX_SIGNAL"] = "modulename.tasks.celery_signal"
search = Search(app)

# tasks.py
from flask_msearch.signal import default_signal

@celery.task(bind=True)
def celery_signal_task(self, backend, sender, changes):
    default_signal(backend, sender, changes)
    return str(self.request.id)

def celery_signal(backend, sender, changes):
    return celery_signal_task.delay(backend, sender, changes)

Relate index(Experimental)

for example

class Tag(db.Model):
    __tablename__ = 'tag'

    id = db.Column(db.Integer, primary_key=True)
    name = db.Column(db.String(49))

class Post(db.Model):
    __tablename__ = 'post'
    __searchable__ = ['title', 'content', 'tag.name']

    id = db.Column(db.Integer, primary_key=True)
    title = db.Column(db.String(49))
    content = db.Column(db.Text)

    # one to one
    tag_id = db.Column(db.Integer, db.ForeignKey('tag.id'))
    tag = db.relationship(
        Tag, backref=db.backref(
            'post', uselist=False), uselist=False)

    def __repr__(self):
        return '<Post:{}>'.format(self.title)

You must add msearch_FUN to Tag model,or the tag.name can’t auto update.

class Tag....
  ......
  def msearch_post_tag(self, delete=False):
      from sqlalchemy import text
      sql = text('select id from post where tag_id=' + str(self.id))
      return {
          'attrs': [{
              'id': str(i[0]),
              'tag.name': self.name
          } for i in db.engine.execute(sql)],
          '_index': Post
      }
Owner
honmaple
风落花语风落天,花落风雨花落田.
honmaple
document organizer with tags and full-text-search, in a simple and clean sqlite3 schema

document organizer with tags and full-text-search, in a simple and clean sqlite3 schema

Manos Pitsidianakis 152 Oct 29, 2022
Pythonic search engine based on PyLucene.

Lupyne is a search engine based on PyLucene, the Python extension for accessing Java Lucene. Lucene is a relatively low-level toolkit, and PyLucene wr

A. Coady 83 Jan 02, 2023
Yuno is context based search engine for anime.

Yuno yuno.mp4 Table of Contents Introduction Power Of Yuno Try Yuno How Yuno was created? References Introduction Yuno is a context based search engin

IAmParadox 354 Dec 19, 2022
Reverse-ikea-image-search - A simple image of ikea search using jina.ai

IKEA Reverse Image Search This is a demo project to fetch ikea product images(IK

SOUVIK GHOSH 4 Mar 08, 2022
Google Drive file searcher

Google Drive file searcher

Hafitz Setya 25 Dec 09, 2022
rclip - AI-Powered Command-Line Photo Search Tool

rclip is a command-line photo search tool based on the awesome OpenAI's CLIP neural network.

Yurij Mikhalevich 394 Dec 12, 2022
GitScanner is a script to make it easy to search for Exposed Git through an advanced Google search.

GitScanner Legal disclaimer Usage of GitScanner for attacking targets without prior mutual consent is illegal. It is the end user's responsibility to

Kaio Gomes 3 Oct 28, 2022
a Telegram bot writen in Python for searching files in Drive. Based on SearchX-bot

Drive Search Bot This is a Telegram bot writen in Python for searching files in Drive. Based on SearchX-bot How to deploy? Clone this repo: git clone

Hafitz Setya 25 Dec 09, 2022
A play store search application programming interface ( API )

Play-Store-API A play store search application programming interface ( API ) Made with Python3

Fayas Noushad 8 Oct 21, 2022
txtai executes machine-learning workflows to transform data and build AI-powered semantic search applications.

txtai executes machine-learning workflows to transform data and build AI-powered semantic search applications.

NeuML 3.1k Dec 31, 2022
🔍 Messages Searcher is make for search custom message in all channels in guild and dm.

🔍 Messages Searcher is make for search custom message in all channels in guild and dm.

Kaneki 33 Dec 31, 2022
Super Simple Similarities Service

Super Simple Similarities Service

vincent d warmerdam 95 Dec 25, 2022
Python script for finding duplicate images within a folder.

Python script for finding duplicate images within a folder.

194 Dec 31, 2022
cve-search - a tool to perform local searches for known vulnerabilities

cve-search cve-search is a tool to import CVE (Common Vulnerabilities and Exposures) and CPE (Common Platform Enumeration) into a MongoDB to facilitat

cve-search 2k Jan 01, 2023
Pythonic Lucene - A simplified python impelementaiton of Apache Lucene

A simplified python impelementaiton of Apache Lucene, mabye helps to understand how an enterprise search engine really works.

Mahdi Sadeghzadeh Ghamsary 2 Sep 12, 2022
PwnWiki Telegram database searching bot

pwtgbot PwnWiki Telegram database searching bot. Screenshots How it looks like in the terminal when running How it looks like in Telegram Run Directly

K4YT3X 3 Jan 25, 2022
基于RSSHUB阅读器实现的获取P站排行和P站搜图,使用时需使用代理

基于RSSHUB阅读器实现的获取P站排行和P站搜图

34 Dec 05, 2022
A simple search engine that allow searching for chess games

A simple search engine that allow searching for chess games based on queries about opening names & opening moves. Built with Python 3.10 and python-chess.

Tyler Hoang 1 Jun 17, 2022
Simple algorithm search engine like google in python using function

Mini-Search-Engine-Like-Google I have created the simple algorithm search engine like google in python using function. I am matching every word with w

Sachin Vinayak Dabhade 5 Sep 24, 2021
A Python web searcher library with different search engines

Robert A simple Python web searcher library with different search engines. Install pip install roberthelper Usage from robert import GoogleSearcher

1 Dec 23, 2021