🚪✊Knock Knock: Get notified when your training ends with only two additional lines of code

Overview

Knock Knock

made-with-python Downloads Downloads GitHub stars

A small library to get a notification when your training is complete or when it crashes during the process with two additional lines of code.

When training deep learning models, it is common to use early stopping. Apart from a rough estimate, it is difficult to predict when the training will finish. Thus, it can be interesting to set up automatic notifications for your training. It is also interesting to be notified when your training crashes in the middle of the process for unexpected reasons.

Installation

Install with pip or equivalent.

pip install knockknock

This code has only been tested with Python >= 3.6.

Usage

The library is designed to be used in a seamless way, with minimal code modification: you only need to add a decorator on top your main function call. The return value (if there is one) is also reported in the notification.

There are currently twelve ways to setup notifications:

Platform External Contributors
email -
Slack -
Telegram -
Microsoft Teams @noklam
Text Message @abhishekkrthakur
Discord @watkinsm
Desktop @atakanyenel @eyalmazuz
Matrix @jcklie
Amazon Chime @prabhakar267
DingTalk @wuutiing
RocketChat @radao
WeChat Work @jcyk

Email

The service relies on Yagmail a GMAIL/SMTP client. You'll need a gmail email address to use it (you can setup one here, it's free). I recommend creating a new one (rather than your usual one) since you'll have to modify the account's security settings to allow the Python library to access it by Turning on less secure apps.

Python

", " "], sender_email=" ") def train_your_nicest_model(your_nicest_parameters): import time time.sleep(10000) return {'loss': 0.9} # Optional return value ">
from knockknock import email_sender

@email_sender(recipient_emails=["
       
       
        
        "
       
       , "
       
       
        
        "
       
       ], sender_email="
       
       
        
        "
       
       )
def train_your_nicest_model(your_nicest_parameters):
    import time
    time.sleep(10000)
    return {'loss': 0.9} # Optional return value

Command-line

knockknock email \
    --recipient-emails <[email protected]>,<[email protected]> \
    --sender-email <grandma'[email protected]> \
    sleep 10

If sender_email is not specified, then the first email in recipient_emails will be used as the sender's email.

Note that launching this will asks you for the sender's email password. It will be safely stored in the system keyring service through the keyring Python library.

Slack

Similarly, you can also use Slack to get notifications. You'll have to get your Slack room webhook URL and optionally your user id (if you want to tag yourself or someone else).

Python

" @slack_sender(webhook_url=webhook_url, channel=" ") def train_your_nicest_model(your_nicest_parameters): import time time.sleep(10000) return {'loss': 0.9} # Optional return value ">
from knockknock import slack_sender

webhook_url = "
     
     
      
      "
     
     
@slack_sender(webhook_url=webhook_url, channel="
      
      
       
       "
      
      )
def train_your_nicest_model(your_nicest_parameters):
    import time
    time.sleep(10000)
    return {'loss': 0.9} # Optional return value

You can also specify an optional argument to tag specific people: user_mentions=[ , ] .

Command-line

knockknock slack \
    --webhook-url <webhook_url_to_your_slack_room> \
    --channel <your_favorite_slack_channel> \
    sleep 10

You can also specify an optional argument to tag specific people: --user-mentions , .

Telegram

You can also use Telegram Messenger to get notifications. You'll first have to create your own notification bot by following the three steps provided by Telegram here and save your API access TOKEN.

Telegram bots are shy and can't send the first message so you'll have to do the first step. By sending the first message, you'll be able to get the chat_id required (identification of your messaging room) by visiting https://api.telegram.org/bot /getUpdates and get the int under the key message['chat']['id'].

Python

", chat_id=CHAT_ID) def train_your_nicest_model(your_nicest_parameters): import time time.sleep(10000) return {'loss': 0.9} # Optional return value ">
from knockknock import telegram_sender

CHAT_ID: int = <your_messaging_room_id>
@telegram_sender(token="
    
    
     
     "
    
    , chat_id=CHAT_ID)
def train_your_nicest_model(your_nicest_parameters):
    import time
    time.sleep(10000)
    return {'loss': 0.9} # Optional return value

Command-line

knockknock telegram \
    --token <your_api_token> \
    --chat-id <your_messaging_room_id> \
    sleep 10

Microsoft Teams

Thanks to @noklam, you can also use Microsoft Teams to get notifications. You'll have to get your Team Channel webhook URL.

Python

") def train_your_nicest_model(your_nicest_parameters): import time time.sleep(10) return {'loss': 0.9} # Optional return value ">
from knockknock import teams_sender

@teams_sender(token="
     
     
      
      "
     
     )
def train_your_nicest_model(your_nicest_parameters):
    import time
    time.sleep(10)
    return {'loss': 0.9} # Optional return value

Command-line

knockknock teams \
    --webhook-url <webhook_url_to_your_teams_channel> \
    sleep 10

You can also specify an optional argument to tag specific people: user_mentions=[ , ] .

Text Message (SMS)

Thanks to @abhishekkrthakur, you can use Twilio to send text message notifications. You'll have to setup a Twilio account here, which is paid service with competitive prices: for instance in the US, getting a new number and sending one text message through this service respectively cost $1.00 and $0.0075. You'll need to get (a) a phone number, (b) your account SID and (c) your authentification token. Some detail here.

Python

" AUTH_TOKEN: str = " " @sms_sender(account_sid=ACCOUNT_SID, auth_token=AUTH_TOKEN, recipient_number=" ", sender_number=" ") def train_your_nicest_model(your_nicest_parameters): import time time.sleep(10) return {'loss': 0.9} # Optional return value ">
from knockknock import sms_sender

ACCOUNT_SID: str = "
       
       
        
        "
       
       
AUTH_TOKEN: str = "
       
       
        
        "
       
       
@sms_sender(account_sid=ACCOUNT_SID, auth_token=AUTH_TOKEN, recipient_number="
        
        
         
         "
        
        , sender_number="
        
        
         
         "
        
        )
def train_your_nicest_model(your_nicest_parameters):
    import time
    time.sleep(10)
    return {'loss': 0.9} # Optional return value

Command-line

knockknock sms \
    --account-sid <your_account_sid> \
    --auth-token <your_account_auth_token> \
    --recipient-number <recipient_number> \
    --sender-number <sender_number>
    sleep 10

Discord

Thanks to @watkinsm, you can also use Discord to get notifications. You'll just have to get your Discord channel's webhook URL.

Python

" @discord_sender(webhook_url=webhook_url) def train_your_nicest_model(your_nicest_parameters): import time time.sleep(10000) return {'loss': 0.9} # Optional return value ">
from knockknock import discord_sender

webhook_url = "
    
    
     
     "
    
    
@discord_sender(webhook_url=webhook_url)
def train_your_nicest_model(your_nicest_parameters):
    import time
    time.sleep(10000)
    return {'loss': 0.9} # Optional return value

Command-line

knockknock discord \
    --webhook-url <webhook_url_to_your_discord_channel> \
    sleep 10

Desktop Notification

You can also get notified from a desktop notification. It is currently only available for MacOS and Linux and Windows 10. For Linux it uses the nofity-send command which uses libnotify, In order to use libnotify, you have to install a notification server. Cinnamon, Deepin, Enlightenment, GNOME, GNOME Flashback and KDE Plasma use their own implementations to display notifications. In other desktop environments, the notification server needs to be launched using your WM's/DE's "autostart" option.

Python

from knockknock import desktop_sender

@desktop_sender(title="Knockknock Desktop Notifier")
def train_your_nicest_model(your_nicest_parameters):
    import time
    time.sleep(10000)
    return {"loss": 0.9}

Command Line

knockknock desktop \
    --title 'Knockknock Desktop Notifier' \
    sleep 2

Matrix

Thanks to @jcklie, you can send notifications via Matrix. The homeserver is the server on which your user that will send messages is registered. Do not forget the schema for the URL (http or https). You'll have to get the access token for a bot or your own user. The easiest way to obtain it is to look into Riot looking in the riot settings, Help & About, down the bottom is: Access Token: . You also need to specify a room alias to which messages are sent. To obtain the alias in Riot, create a room you want to use, then open the room settings under Room Addresses and add an alias.

Python

" # e.g. https://matrix.org TOKEN = " " # e.g. WiTyGizlr8ntvBXdFfZLctyY ROOM = "
from knockknock import matrix_sender

HOMESERVER = "
      
      
       
       "
      
       # e.g. https://matrix.org
TOKEN = "
      
      
       
       "
      
                    # e.g. WiTyGizlr8ntvBXdFfZLctyY
ROOM = "
      
                           # e.g. #knockknock:matrix.org

@matrix_sender(homeserver=HOMESERVER, token=TOKEN, room=ROOM)
def train_your_nicest_model(your_nicest_parameters):
    import time
    time.sleep(10000)
    return {'loss': 0.9} # Optional return value

Command-line

knockknock matrix \
    --homeserver <homeserver> \
    --token <token> \
    --room <room> \
    sleep 10

Amazon Chime

Thanks to @prabhakar267, you can also use Amazon Chime to get notifications. You'll have to get your Chime room webhook URL.

Python

") def train_your_nicest_model(your_nicest_parameters): import time time.sleep(10) return {'loss': 0.9} # Optional return value ">
from knockknock import chime_sender

@chime_sender(webhook_url="
     
     
      
      "
     
     )
def train_your_nicest_model(your_nicest_parameters):
    import time
    time.sleep(10)
    return {'loss': 0.9} # Optional return value

Command-line

knockknock chime \
    --webhook-url <webhook_url_to_your_chime_room> \
    sleep 10

You can also specify an optional argument to tag specific people: user_mentions=[ , ] .

DingTalk

DingTalk is now supported thanks to @wuutiing. Given DingTalk chatroom robot's webhook url and secret/keywords(at least one of them are set when creating a chatroom robot), your notifications will be sent to reach any one in that chatroom.

Python

" @dingtalk_sender(webhook_url=webhook_url, secret=" ", keywords=[" "]) def train_your_nicest_model(your_nicest_parameters): import time time.sleep(10000) return {'loss': 0.9} # Optional return value ">
from knockknock import dingtalk_sender

webhook_url = "
      
      
       
       "
      
      
@dingtalk_sender(webhook_url=webhook_url, secret="
       
       
        
        "
       
       , keywords=["
       
       
        
        "
       
       ])
def train_your_nicest_model(your_nicest_parameters):
    import time
    time.sleep(10000)
    return {'loss': 0.9} # Optional return value

Command-line

knockknock dingtalk \
    --webhook-url <webhook_url_to_your_dingtalk_chatroom_robot> \
    --secret <your_robot_secret_if_set> \
    sleep 10

You can also specify an optional argument to at specific people: user_mentions=[" "] .

RocketChat

You can use RocketChat to get notifications. You'll need the following before you can post notifications:

  • a RocketChat server e.g. rocketchat.yourcompany.com
  • a RocketChat user id (you'll be able to view your user id when you create a personal access token in the next step)
  • a RocketChat personal access token (create one as per this guide)
  • a RocketChat channel

Python

", rocketchat_user_id=" ", rocketchat_auth_token=" ", channel=" ") def train_your_nicest_model(your_nicest_parameters): import time time.sleep(10000) return {'loss': 0.9} # Optional return value ">
from knockknock import rocketchat_sender

@rocketchat_sender(
    rocketchat_server_url="
        
        
         
         "
        
        ,
    rocketchat_user_id="
        
        
         
         "
        
        ,
    rocketchat_auth_token="
        
        
         
         "
        
        ,
    channel="
        
        
         
         "
        
        )
def train_your_nicest_model(your_nicest_parameters):
    import time
    time.sleep(10000)
    return {'loss': 0.9} # Optional return value

You can also specify two optional arguments:

  • to tag specific users: user_mentions=[ , ]
  • to use an alias for the notification: alias="My Alias"

Command-line

knockknock rocketchat \
    --rocketchat-server-url <url_to_your_rocketchat_server> \
    --rocketchat-user-id <your_rocketchat_user_id> \
    --rocketchat-auth-token <your_rocketchat_auth_token> \
    --channel <channel_name> \
    sleep 10

WeChat Work

WeChat Work is now supported thanks to @jcyk. Given WeChat Work chatroom robot's webhook url, your notifications will be sent to reach anyone in that chatroom.

Python

" @wechat_sender(webhook_url=webhook_url) def train_your_nicest_model(your_nicest_parameters): import time time.sleep(10000) return {'loss': 0.9} # Optional return value ">
from knockknock import wechat_sender

webhook_url = "
    
    
     
     "
    
    
@wechat_sender(webhook_url=webhook_url)
def train_your_nicest_model(your_nicest_parameters):
    import time
    time.sleep(10000)
    return {'loss': 0.9} # Optional return value

Command-line

knockknock wechat \
    --webhook-url <webhook_url_to_your_wechat_work_chatroom_robot> \
    sleep 10

You can also specify an optional argument to tag specific people: user-mentions=[" "] and/or user-mentions-mobile=[" "] .

Note on distributed training

When using distributed training, a GPU is bound to its process using the local rank variable. Since knockknock works at the process level, if you are using 8 GPUs, you would get 8 notifications at the beginning and 8 notifications at the end... To circumvent that, except for errors, only the master process is allowed to send notifications so that you receive only one notification at the beginning and one notification at the end.

Note: In PyTorch, the launch of torch.distributed.launch sets up a RANK environment variable for each process (see here). This is used to detect the master process, and for now, the only simple way I came up with. Unfortunately, this is not intended to be general for all platforms but I would happily discuss smarter/better ways to handle distributed training in an issue/PR.

Owner
Hugging Face
The AI community building the future.
Hugging Face
Simplify stop motion animation with machine learning.

Simplify stop motion animation with machine learning.

Nick Bild 25 Sep 15, 2022
Timeseries analysis for neuroscience data

=================================================== Nitime: timeseries analysis for neuroscience data ===============================================

NIPY developers 212 Dec 09, 2022
Convoys is a simple library that fits a few statistical model useful for modeling time-lagged conversions.

Convoys is a simple library that fits a few statistical model useful for modeling time-lagged conversions. There is a lot more info if you head over to the documentation. You can also take a look at

Better 240 Dec 26, 2022
A benchmark of data-centric tasks from across the machine learning lifecycle.

A benchmark of data-centric tasks from across the machine learning lifecycle.

61 Dec 28, 2022
ML Kaggle Titanic Problem using LogisticRegrission

-ML-Kaggle-Titanic-Problem-using-LogisticRegrission here you will find the solution for the titanic problem on kaggle with comments and step by step c

Mahmoud Nasser Abdulhamed 3 Oct 23, 2022
Classification based on Fuzzy Logic(C-Means).

CMeans_fuzzy Classification based on Fuzzy Logic(C-Means). Table of Contents About The Project Fuzzy CMeans Algorithm Built With Getting Started Insta

Armin Zolfaghari Daryani 3 Feb 08, 2022
A Software Framework for Neuromorphic Computing

A Software Framework for Neuromorphic Computing

Lava 338 Dec 26, 2022
Responsible AI Workshop: a series of tutorials & walkthroughs to illustrate how put responsible AI into practice

Responsible AI Workshop Responsible innovation is top of mind. As such, the tech industry as well as a growing number of organizations of all kinds in

Microsoft 9 Sep 14, 2022
Turning images into '9-pan' palettes using KMeans clustering from sklearn.

img2palette Turning images into '9-pan' palettes using KMeans clustering from sklearn. Requirements We require: Pillow, for opening and processing ima

Samuel Vidovich 2 Jan 01, 2022
Model Agnostic Confidence Estimator (MACEST) - A Python library for calibrating Machine Learning models' confidence scores

Model Agnostic Confidence Estimator (MACEST) - A Python library for calibrating Machine Learning models' confidence scores

Oracle 95 Dec 28, 2022
Implementation of different ML Algorithms from scratch, written in Python 3.x

Implementation of different ML Algorithms from scratch, written in Python 3.x

Gautam J 393 Nov 29, 2022
To-Be is a machine learning challenge on CodaLab Platform about Mortality Prediction

To-Be is a machine learning challenge on CodaLab Platform about Mortality Prediction. The challenge aims to adress the problems of medical imbalanced data classification.

Marwan Mashra 1 Jan 31, 2022
Software Engineer Salary Prediction

Based on 2021 stack overflow data, this machine learning web application helps one predict the salary based on years of experience, level of education and the country they work in.

Jhanvi Mimani 1 Jan 08, 2022
Real-time stream processing for python

Streamz Streamz helps you build pipelines to manage continuous streams of data. It is simple to use in simple cases, but also supports complex pipelin

Python Streamz 1.1k Dec 28, 2022
Relevance Vector Machine implementation using the scikit-learn API.

scikit-rvm scikit-rvm is a Python module implementing the Relevance Vector Machine (RVM) machine learning technique using the scikit-learn API. Quicks

James Ritchie 204 Nov 18, 2022
fMRIprep Pipeline To Machine Learning

fMRIprep Pipeline To Machine Learning(Demo) 所有配置均在config.py文件下定义 前置环境(lilab) 各个节点均安装docker,并有fmripre的镜像 可以使用conda中的base环境(相应的第三份包之后更新) 1. fmriprep scr

Alien 3 Mar 08, 2022
Pytools is an open source library containing general machine learning and visualisation utilities for reuse

pytools is an open source library containing general machine learning and visualisation utilities for reuse, including: Basic tools for API developmen

BCG Gamma 26 Nov 06, 2022
a distributed deep learning platform

Apache SINGA Distributed deep learning system http://singa.apache.org Quick Start Installation Examples Issues JIRA tickets Code Analysis: Mailing Lis

The Apache Software Foundation 2.7k Jan 05, 2023
CVXPY is a Python-embedded modeling language for convex optimization problems.

CVXPY The CVXPY documentation is at cvxpy.org. We are building a CVXPY community on Discord. Join the conversation! For issues and long-form discussio

4.3k Jan 08, 2023
Machine Learning Study 혼자 해보기

Machine Learning Study 혼자 해보기 기여자 (Contributors) ✨ Teddy Lee 🏠 HongJaeKwon 🏠 Seungwoo Han 🏠 Tae Heon Kim 🏠 Steve Kwon 🏠 SW Song 🏠 K1A2 🏠 Wooil

Teddy Lee 1.7k Jan 01, 2023