Matplotlib Image labeller for classifying images

Overview

mpl-image-labeller

Binder Documentation Status

License PyPI Python Version

Use Matplotlib to label images for classification. Works anywhere Matplotlib does - from the notebook to a standalone gui!

For more see the documentation.

Install

pip install mpl-image-labeller

Key features

  • Simple interface
  • Uses keys instead of mouse
  • Only depends on Matplotlib
    • Works anywhere - from inside Jupyter to any supported GUI framework
  • Displays images with correct aspect ratio
  • Easily configurable keymap
  • Smart interactions with default Matplotlib keymap
  • Callback System (see examples/callbacks.py)

single class per image

gif of usage for labelling images of cats and dogs

multiple classes per image

gif of usage for labelling images of cats and dogs

Usage

import matplotlib.pyplot as plt
import numpy as np

from mpl_image_labeller import image_labeller

images = np.random.randn(5, 10, 10)
labeller = image_labeller(
    images, classes=["good", "bad", "meh"], label_keymap=["a", "s", "d"]
)
plt.show()

accessing the axis You can further modify the image (e.g. add masks over them) by using the plotting methods on axis object accessible by labeller.ax.

Lazy Loading Images If you want to lazy load your images you can provide a function to give the images. This function should take the integer idx as an argument and return the image that corresponds to that index. If you do this then you must also provide N_images in the constructor to let the object know how many images it should expect. See examples/lazy_loading.py for an example.

Controls

  • <- move one image back
  • -> move one image forward

To label images use the keys defined in the label_keymap argument - default 0, 1, 2...

Get the labels by accessing the labels property.

Overwriting default keymap

Matplotlib has default keybindings that it applied to all figures via rcparams.keymap that allow for actions such as s to save or q to quit. If you inlcude one of these keys as a shortcut for labelling as a class then that default keymap will be disabled for that figure.

Related Projects

This is not the first project to implement easy image labelling but seems to be the first to do so entirely in Matplotlib. The below projects implement varying degrees of complexity and/or additional features in different frameworks.

You might also like...
This repository contains several image-to-image translation models, whcih were tested for RGB to NIR image generation. The models are Pix2Pix, Pix2PixHD, CycleGAN and PointWise.

RGB2NIR_Experimental This repository contains several image-to-image translation models, whcih were tested for RGB to NIR image generation. The models

Official implement of Paper:A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sening  images
Official implement of Paper:A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sening images

A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images 深度监督影像融合网络DSIFN用于高分辨率双时相遥感影像变化检测 Of

The first dataset of composite images with rationality score indicating whether the object placement in a composite image is reasonable.
The first dataset of composite images with rationality score indicating whether the object placement in a composite image is reasonable.

Object-Placement-Assessment-Dataset-OPA Object-Placement-Assessment (OPA) is to verify whether a composite image is plausible in terms of the object p

For auto aligning, cropping, and scaling HR and LR images for training image based neural networks

ImgAlign For auto aligning, cropping, and scaling HR and LR images for training image based neural networks Usage Make sure OpenCV is installed, 'pip

Rename Images with Auto Generated Neural Image Captions

Recaption Images with Generated Neural Image Caption Example Usage: Commandline: Recaption all images from folder /home/feng/Downloads/images to folde

A python-image-classification web application project, written in Python and served through the Flask Microframework. This Project implements the VGG16 covolutional neural network, through Keras and Tensorflow wrappers, to make predictions on uploaded images.
Image-to-Image Translation with Conditional Adversarial Networks (Pix2pix) implementation in keras

pix2pix-keras Pix2pix implementation in keras. Original paper: Image-to-Image Translation with Conditional Adversarial Networks (pix2pix) Paper Author

Learning Continuous Image Representation with Local Implicit Image Function
Learning Continuous Image Representation with Local Implicit Image Function

LIIF This repository contains the official implementation for LIIF introduced in the following paper: Learning Continuous Image Representation with Lo

Comments
Releases(1.1.2)
  • 1.1.2(Nov 18, 2022)

  • 1.1.1(Nov 12, 2021)

    What's Changed

    • add github actions test by @ianhi in https://github.com/ianhi/mpl-image-labeller/pull/20
    • Autoscale cmaps + add tests by @ianhi in https://github.com/ianhi/mpl-image-labeller/pull/21
    • Updated callbacks example to show how to adjust overlay extent

    Full Changelog: https://github.com/ianhi/mpl-image-labeller/compare/1.1.0...1.1.1

    Source code(tar.gz)
    Source code(zip)
  • 1.1.0(Nov 1, 2021)

    What's Changed

    • Added ability for user to set the title https://github.com/ianhi/mpl-image-labeller/pull/15
    • Updated text positioning for single class labeller

    Full Changelog: https://github.com/ianhi/mpl-image-labeller/compare/1.0.0...1.1.0

    Source code(tar.gz)
    Source code(zip)
  • 1.0.0(Oct 30, 2021)

  • 0.5.0(Oct 29, 2021)

    • Fixed xlims getting messed up when zooming in https://github.com/ianhi/mpl-image-labeller/pull/9
    • Allow passing imshow_kwargs https://github.com/ianhi/mpl-image-labeller/commit/27afa0bf9633c5f59e2d3089f9fef789147e2b3c
    Source code(tar.gz)
    Source code(zip)
  • 0.4.0(Oct 29, 2021)

  • 0.3.0(Oct 27, 2021)

  • 0.2.0(Oct 27, 2021)

    Full Changelog: https://github.com/ianhi/mpl-image-labeller/compare/0.1.1...0.2.0

    Fixes:

    init_labels is respected

    new features:

    1. ax is not accesible through the .ax attribute
    2. images can now be a callable

    Thanks to @jrussell25 for suggesting these improvements

    Source code(tar.gz)
    Source code(zip)
  • 0.1.1(Oct 27, 2021)

Owner
Ian Hunt-Isaak
The embodiment of entropy - He/Him
Ian Hunt-Isaak
Code for "Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance Consistency" paper

UNICORN 🦄 Webpage | Paper | BibTex PyTorch implementation of "Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance Consistency" pap

118 Jan 06, 2023
Mixed Transformer UNet for Medical Image Segmentation

MT-UNet Update 2021/11/19 Thank you for your interest in our work. We have uploaded the code of our MTUNet to help peers conduct further research on i

dotman 92 Dec 25, 2022
PERIN is Permutation-Invariant Semantic Parser developed for MRP 2020

PERIN: Permutation-invariant Semantic Parsing David Samuel & Milan Straka Charles University Faculty of Mathematics and Physics Institute of Formal an

ÚFAL 40 Jan 04, 2023
This is the official Pytorch implementation of the paper "Diverse Motion Stylization for Multiple Style Domains via Spatial-Temporal Graph-Based Generative Model"

Diverse Motion Stylization (Official) This is the official Pytorch implementation of this paper. Diverse Motion Stylization for Multiple Style Domains

Soomin Park 28 Dec 16, 2022
A python code to convert Keras pre-trained weights to Pytorch version

Weights_Keras_2_Pytorch 最近想在Pytorch项目里使用一下谷歌的NIMA,但是发现没有预训练好的pytorch权重,于是整理了一下将Keras预训练权重转为Pytorch的代码,目前是支持Keras的Conv2D, Dense, DepthwiseConv2D, Batch

Liu Hengyu 2 Dec 16, 2021
Qt-GUI implementation of the YOLOv5 algorithm (ver.6 and ver.5)

YOLOv5-GUI 🎉 YOLOv5算法(ver.6及ver.5)的Qt-GUI实现 🎉 Qt-GUI implementation of the YOLOv5 algorithm (ver.6 and ver.5). 基于YOLOv5的v5版本和v6版本及Javacr大佬的UI逻辑进行编写

EricFang 12 Dec 28, 2022
YOLOv7 - Framework Beyond Detection

🔥🔥🔥🔥 YOLO with Transformers and Instance Segmentation, with TensorRT acceleration! 🔥🔥🔥

JinTian 3k Jan 01, 2023
A python package simulating the quasi-2D pseudospin-1/2 Gross-Pitaevskii equation with NVIDIA GPU acceleration.

A python package simulating the quasi-2D pseudospin-1/2 Gross-Pitaevskii equation with NVIDIA GPU acceleration. Introduction spinor-gpe is high-level,

2 Sep 20, 2022
This repository contains the files for running the Patchify GUI.

Repository Name Train-Test-Validation-Dataset-Generation App Name Patchify Description This app is designed for crop images and creating smal

Salar Ghaffarian 9 Feb 15, 2022
CoINN: Correlated-informed neural networks: a new machine learning framework to predict pressure drop in micro-channels

CoINN: Correlated-informed neural networks: a new machine learning framework to predict pressure drop in micro-channels Accurate pressure drop estimat

Alejandro Montanez 0 Jan 21, 2022
LOFO (Leave One Feature Out) Importance calculates the importances of a set of features based on a metric of choice,

LOFO (Leave One Feature Out) Importance calculates the importances of a set of features based on a metric of choice, for a model of choice, by iteratively removing each feature from the set, and eval

Ahmet Erdem 691 Dec 23, 2022
Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition

Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition The official code of ABINet (CVPR 2021, Oral).

334 Dec 31, 2022
Cave Generation using metaballs in Blender. Originally created by sdfgeoff, Edited by Myself (Archie Jaskowicz).

Blender-Cave-Generation Cave Generation using metaballs in Blender. Originally created by sdfgeoff, Edited by Myself (Archie Jaskowicz). Installation

2 Dec 28, 2022
The source code of CVPR 2019 paper "Deep Exemplar-based Video Colorization".

Deep Exemplar-based Video Colorization (Pytorch Implementation) Paper | Pretrained Model | Youtube video 🔥 | Colab demo Deep Exemplar-based Video Col

Bo Zhang 253 Dec 27, 2022
Our solution for SSN Invente 2021's Hackathon

Our solution for SSN Invente 2021's Hackathon. To help maitain godowns in a pristine and safe condition using raspberry pi.

1 Jan 12, 2022
LibFewShot: A Comprehensive Library for Few-shot Learning.

LibFewShot Make few-shot learning easy. Supported Methods Meta MAML(ICML'17) ANIL(ICLR'20) R2D2(ICLR'19) Versa(NeurIPS'18) LEO(ICLR'19) MTL(CVPR'19) M

<a href=[email protected]&L"> 603 Jan 05, 2023
MetaShift: A Dataset of Datasets for Evaluating Contextual Distribution Shifts and Training Conflicts (ICLR 2022)

MetaShift: A Dataset of Datasets for Evaluating Distribution Shifts and Training Conflicts This repo provides the PyTorch source code of our paper: Me

88 Jan 04, 2023
Pytorch implementations of Bayes By Backprop, MC Dropout, SGLD, the Local Reparametrization Trick, KF-Laplace, SG-HMC and more

Bayesian Neural Networks Pytorch implementations for the following approximate inference methods: Bayes by Backprop Bayes by Backprop + Local Reparame

1.4k Jan 07, 2023
git《Investigating Loss Functions for Extreme Super-Resolution》(CVPR 2020) GitHub:

Investigating Loss Functions for Extreme Super-Resolution NTIRE 2020 Perceptual Extreme Super-Resolution Submission. Our method ranked first and secon

Sejong Yang 0 Oct 17, 2022
Multiple Object Tracking with Yolov5!

Tracking with yolov5 This implementation is for who need to tracking multi-object only with detector. You can easily track mult-object with your well

9 Nov 08, 2022