Matplotlib Image labeller for classifying images

Overview

mpl-image-labeller

Binder Documentation Status

License PyPI Python Version

Use Matplotlib to label images for classification. Works anywhere Matplotlib does - from the notebook to a standalone gui!

For more see the documentation.

Install

pip install mpl-image-labeller

Key features

  • Simple interface
  • Uses keys instead of mouse
  • Only depends on Matplotlib
    • Works anywhere - from inside Jupyter to any supported GUI framework
  • Displays images with correct aspect ratio
  • Easily configurable keymap
  • Smart interactions with default Matplotlib keymap
  • Callback System (see examples/callbacks.py)

single class per image

gif of usage for labelling images of cats and dogs

multiple classes per image

gif of usage for labelling images of cats and dogs

Usage

import matplotlib.pyplot as plt
import numpy as np

from mpl_image_labeller import image_labeller

images = np.random.randn(5, 10, 10)
labeller = image_labeller(
    images, classes=["good", "bad", "meh"], label_keymap=["a", "s", "d"]
)
plt.show()

accessing the axis You can further modify the image (e.g. add masks over them) by using the plotting methods on axis object accessible by labeller.ax.

Lazy Loading Images If you want to lazy load your images you can provide a function to give the images. This function should take the integer idx as an argument and return the image that corresponds to that index. If you do this then you must also provide N_images in the constructor to let the object know how many images it should expect. See examples/lazy_loading.py for an example.

Controls

  • <- move one image back
  • -> move one image forward

To label images use the keys defined in the label_keymap argument - default 0, 1, 2...

Get the labels by accessing the labels property.

Overwriting default keymap

Matplotlib has default keybindings that it applied to all figures via rcparams.keymap that allow for actions such as s to save or q to quit. If you inlcude one of these keys as a shortcut for labelling as a class then that default keymap will be disabled for that figure.

Related Projects

This is not the first project to implement easy image labelling but seems to be the first to do so entirely in Matplotlib. The below projects implement varying degrees of complexity and/or additional features in different frameworks.

You might also like...
This repository contains several image-to-image translation models, whcih were tested for RGB to NIR image generation. The models are Pix2Pix, Pix2PixHD, CycleGAN and PointWise.

RGB2NIR_Experimental This repository contains several image-to-image translation models, whcih were tested for RGB to NIR image generation. The models

Official implement of Paper:A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sening  images
Official implement of Paper:A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sening images

A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images 深度监督影像融合网络DSIFN用于高分辨率双时相遥感影像变化检测 Of

The first dataset of composite images with rationality score indicating whether the object placement in a composite image is reasonable.
The first dataset of composite images with rationality score indicating whether the object placement in a composite image is reasonable.

Object-Placement-Assessment-Dataset-OPA Object-Placement-Assessment (OPA) is to verify whether a composite image is plausible in terms of the object p

For auto aligning, cropping, and scaling HR and LR images for training image based neural networks

ImgAlign For auto aligning, cropping, and scaling HR and LR images for training image based neural networks Usage Make sure OpenCV is installed, 'pip

Rename Images with Auto Generated Neural Image Captions

Recaption Images with Generated Neural Image Caption Example Usage: Commandline: Recaption all images from folder /home/feng/Downloads/images to folde

A python-image-classification web application project, written in Python and served through the Flask Microframework. This Project implements the VGG16 covolutional neural network, through Keras and Tensorflow wrappers, to make predictions on uploaded images.
Image-to-Image Translation with Conditional Adversarial Networks (Pix2pix) implementation in keras

pix2pix-keras Pix2pix implementation in keras. Original paper: Image-to-Image Translation with Conditional Adversarial Networks (pix2pix) Paper Author

Learning Continuous Image Representation with Local Implicit Image Function
Learning Continuous Image Representation with Local Implicit Image Function

LIIF This repository contains the official implementation for LIIF introduced in the following paper: Learning Continuous Image Representation with Lo

Comments
Releases(1.1.2)
  • 1.1.2(Nov 18, 2022)

  • 1.1.1(Nov 12, 2021)

    What's Changed

    • add github actions test by @ianhi in https://github.com/ianhi/mpl-image-labeller/pull/20
    • Autoscale cmaps + add tests by @ianhi in https://github.com/ianhi/mpl-image-labeller/pull/21
    • Updated callbacks example to show how to adjust overlay extent

    Full Changelog: https://github.com/ianhi/mpl-image-labeller/compare/1.1.0...1.1.1

    Source code(tar.gz)
    Source code(zip)
  • 1.1.0(Nov 1, 2021)

    What's Changed

    • Added ability for user to set the title https://github.com/ianhi/mpl-image-labeller/pull/15
    • Updated text positioning for single class labeller

    Full Changelog: https://github.com/ianhi/mpl-image-labeller/compare/1.0.0...1.1.0

    Source code(tar.gz)
    Source code(zip)
  • 1.0.0(Oct 30, 2021)

  • 0.5.0(Oct 29, 2021)

    • Fixed xlims getting messed up when zooming in https://github.com/ianhi/mpl-image-labeller/pull/9
    • Allow passing imshow_kwargs https://github.com/ianhi/mpl-image-labeller/commit/27afa0bf9633c5f59e2d3089f9fef789147e2b3c
    Source code(tar.gz)
    Source code(zip)
  • 0.4.0(Oct 29, 2021)

  • 0.3.0(Oct 27, 2021)

  • 0.2.0(Oct 27, 2021)

    Full Changelog: https://github.com/ianhi/mpl-image-labeller/compare/0.1.1...0.2.0

    Fixes:

    init_labels is respected

    new features:

    1. ax is not accesible through the .ax attribute
    2. images can now be a callable

    Thanks to @jrussell25 for suggesting these improvements

    Source code(tar.gz)
    Source code(zip)
  • 0.1.1(Oct 27, 2021)

Owner
Ian Hunt-Isaak
The embodiment of entropy - He/Him
Ian Hunt-Isaak
Repo for "Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks"

Summary This is the code for the paper Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks by Yanxiang Wang, Xian Zh

zhangxian 54 Jan 03, 2023
Code for "Searching for Efficient Multi-Stage Vision Transformers"

Searching for Efficient Multi-Stage Vision Transformers This repository contains the official Pytorch implementation of "Searching for Efficient Multi

Yi-Lun Liao 62 Oct 25, 2022
For IBM Quantum Challenge Africa 2021, 9 September (07:00 UTC) - 20 September (23:00 UTC).

IBM Quantum Challenge Africa 2021 To ensure Africa is able to apply quantum computing to solve problems relevant to the continent, the IBM Research La

Qiskit Community 48 Dec 25, 2022
This is the repository for paper NEEDLE: Towards Non-invertible Backdoor Attack to Deep Learning Models.

This is the repository for paper NEEDLE: Towards Non-invertible Backdoor Attack to Deep Learning Models.

1 Oct 25, 2021
Specification language for generating Generalized Linear Models (with or without mixed effects) from conceptual models

tisane Tisane: Authoring Statistical Models via Formal Reasoning from Conceptual and Data Relationships TL;DR: Analysts can use Tisane to author gener

Eunice Jun 11 Nov 15, 2022
⚾🤖⚾ Automatic baseball pitching overlay in realtime

⚾ Automatically overlaying pitch motion and trajectory with machine learning! This project takes your baseball pitching clips and automatically genera

Tony Chou 240 Dec 05, 2022
PyTorch implementation of deep GRAph Contrastive rEpresentation learning (GRACE).

GRACE The official PyTorch implementation of deep GRAph Contrastive rEpresentation learning (GRACE). For a thorough resource collection of self-superv

Big Data and Multi-modal Computing Group, CRIPAC 186 Dec 27, 2022
Hooks for VCOCO

Verbs in COCO (V-COCO) Dataset This repository hosts the Verbs in COCO (V-COCO) dataset and associated code to evaluate models for the Visual Semantic

Saurabh Gupta 131 Nov 24, 2022
Pytorch implementation of "Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling"

RNN-for-Joint-NLU Pytorch implementation of "Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling"

Kim SungDong 194 Dec 28, 2022
A curated list of awesome Active Learning

Awesome Active Learning 🤩 A curated list of awesome Active Learning ! 🤩 Background (image source: Settles, Burr) What is Active Learning? Active lea

BAI Fan 431 Jan 03, 2023
using STGCN to achieve egg classification task

EEG Classification   The task requires us to classify electroencephalography(EEG) into six categories, including human body, human face, animal body,

4 Jun 13, 2022
An example of time series augmentation methods with Keras

Time Series Augmentation This is a collection of time series data augmentation methods and an example use using Keras. News 2020/04/16: Repository Cre

九州大学 ヒューマンインタフェース研究室 229 Jan 02, 2023
Pytorch implementation of Bert and Pals: Projected Attention Layers for Efficient Adaptation in Multi-Task Learning

PyTorch implementation of BERT and PALs Introduction Work by Asa Cooper Stickland and Iain Murray, University of Edinburgh. Code for BERT and PALs; mo

Asa Cooper Stickland 70 Dec 29, 2022
(AAAI2022) Style Mixing and Patchwise Prototypical Matching for One-Shot Unsupervised Domain Adaptive Semantic Segmentation

SM-PPM This is a Pytorch implementation of our paper "Style Mixing and Patchwise Prototypical Matching for One-Shot Unsupervised Domain Adaptive Seman

W-zx-Y 10 Dec 07, 2022
Implementation of ML models like Decision tree, Naive Bayes, Logistic Regression and many other

ML_Model_implementaion Implementation of ML models like Decision tree, Naive Bayes, Logistic Regression and many other dectree_model: Implementation o

Anshuman Dalai 3 Jan 24, 2022
[ICCV 2021] FaPN: Feature-aligned Pyramid Network for Dense Image Prediction

FaPN: Feature-aligned Pyramid Network for Dense Image Prediction [arXiv] [Project Page] @inproceedings{ huang2021fapn, title={{FaPN}: Feature-alig

EMI-Group 175 Dec 30, 2022
My personal Home Assistant configuration.

About This is my personal Home Assistant configuration. My guiding princile is to have full local control of all my devices. I intend everything to ru

Chris Turra 13 Jun 07, 2022
Deep motion generator collections

GenMotion GenMotion (/gen’motion/) is a Python library for making skeletal animations. It enables easy dataset loading and experiment sharing for synt

23 May 24, 2022
Official Implementation and Dataset of "PPR10K: A Large-Scale Portrait Photo Retouching Dataset with Human-Region Mask and Group-Level Consistency", CVPR 2021

Portrait Photo Retouching with PPR10K Paper | Supplementary Material PPR10K: A Large-Scale Portrait Photo Retouching Dataset with Human-Region Mask an

184 Dec 11, 2022
[NeurIPS 2021] PyTorch Code for Accelerating Robotic Reinforcement Learning with Parameterized Action Primitives

Robot Action Primitives (RAPS) This repository is the official implementation of Accelerating Robotic Reinforcement Learning via Parameterized Action

Murtaza Dalal 55 Dec 27, 2022