YOLO-v5 기반 단안 카메라의 영상을 활용해 차간 거리를 일정하게 유지하며 주행하는 Adaptive Cruise Control 기능 구현

Overview

자율 주행차의 영상 기반 차간거리 유지 개발

Table of Contents


프로젝트 소개


YOLO-v5 기반으로 단안 카메라의 영상을 활용해 차간 거리를 일정하게 유지하며 주행하는 Adaptive Cruise Control 기능을 제공한다.


주요 기능

객체 인식

  • 복도에서의 차량 카트 이미지를 촬영하여 커스텀 데이터셋을 제작
  • YOLO-v5 모델 중 가장 초당 프레임 수 가 높은 YOLO-v5s에 커스텀 데이터셋을 학습
  • 라즈베리파이에 부착된 웹캠을 통해 실시간으로 전방 차량 인식

거리 측정

  • 객체 인식 시 나타나는 Bounding box의 좌표값을 추출하여 대상과의 거리가 1m 일 때 Bounding box의 높이와 너비값을 측정
  • 이후 인식된 객체의 Bounding box 높이와 너비값과 1m 일 때의 Bounding box 높이와 너비값의 비례식을 통해 거리를 측정

거리 유지

  • 측정된 거리 기반으로 동작을 나누어 시리얼 통신을 통해 동작 신호를 cart 조작하는 STM보드에 전달
  • STM보드에서 전달받은 신호를 기반으로 PWM 제어를 통해 차간 거리가 유지되도록 속도 조절

시스템 구조

객체 인식 및 거리측정 시스템 구조

거리유지 시스템 구조

거리측정 알고리즘

  • 카메라의 해상도에 따라 1m에서 기준이 되는 Bounding box의 width와 height의 크기가 달라진다

디렉토리 구조

adaptive-cruise-control
├── cart
│   ├── main_arm.c
│   ├── main_cart.c
│   └── README.md
│
├── dataset
│   └── ...
│
├── yolov5
│   ├── detect_custom.py
│   ├── cart_model.pt
│   └── ...
│
└── README.md

결과

실시간 객체 인식 및 거리측정

  • 학습된 가중치 모델을 바탕으로 단안 카메라를 이용하여 전방 차량 키트를 인식하였다.

  • 인식된 차량 키트에 대한 Bounding box에서 왼쪽부터 클래스명, 예측 정확도, 단안 카메라 기준 예측 거리(cm) 를 나타낸다.

  • 인식 결과, 이미지 크기 128*128 기준 평균적으로 초당 약 3 프레임의 속도로 동작하였으며, 최대 5m까지 높은 정확도로 인식됨을 확인할 수 있었다.

  • 거리 예측 오차율 측정 결과

실제 거리 측정 최소 거리 측정 최대 거리 최대 오차율
0.5m 0.47m 0.53m 6%
1m 0.96m 1.02m 3%
2m 1.98m 2.02m 1%
3m 2.85m 2.94m 5%
5m 4.65m 5.05m 7%

거리유지

동작 설정

  1. 전방 차량과의 거리가 70cm보다 가까워진 경우 차량 정지
  2. 전방 차량과의 거리가 70cm ~ 120cm인 경우 큰 폭으로 속도 감소
  3. 전방 차량과의 거리가 120cm ~ 150cm 인 경우 작은 폭으로 속도 감소
  4. 전방 차량이 없거나 거리가 150cm 보다 먼 경우 원래 주행 속도로 복구

거리유지 기능 실험 결과

  • 기준 주행 속도는 차량 키트가 스스로 움직일 수 있는 최저 속도로 설정하였다.
  • 테스트 결과, 거리가 1m에 가까워 지면 상당히 속도가 줄어들었고 0.7m에 이르면 차량 키트가 완전히 정지하였으며, 전방에 가까운 차량이 없으면 원래의 주행 속도로 돌아오는 기능 또한 정상적으로 동작함을 확인할 수 있었다.

실행 방법

YOLO v5를 활용한 실시간 객체 인식 및 거리 예측

  1. https://github.com/sungjuGit/Pytorch-and-Vision-for-Raspberry-Pi-4B 에서 Pytorch, Pytorch Vision 설치에 필요한 wheel 파일을 라즈베리파이에 다운로드한다.

  2. sudo pip3 install torch-1.8.0a0+56b43f4-cp37-cp37m-linux_armv7l.whl
    sudo pip3 install torchvision-0.9.0a0+8fb5838-cp37-cp37m-linux_armv7l.whl

  3. adative-cruise-control/yolov5를 라즈베리파이에 클론한다.

  4. pip3 install -r requirements.txt으로 필요한 종속 라이브러리를 설치한다.

  5. python3 detect_custom.py --weights cart_model.pt --img 128 --conf 0.4 --source 0 으로 실시간 객체 인식 및 거리 예측을 한다.

detect_custom.py : 객체인식 및 거리 예측을 위한 파이썬 파일
cart_model.pt : 커스텀 이미지로 학습된 yolo-v5s 가중치 모델


거리 예측을 바탕으로 카트 구동

  1. https://github.com/icns-distributed-cloud/Self-driving-project 을 노트북에 클론한다.

  2. Self-driving-project/2021_self_driving_cart/robot_arm_basic/Src/main.cadaptive-cruise-control/cart/main_arm.c으로 대치시킨다.

  3. Self-driving-project/2021_self_driving_cart/cart/Src/main.cadaptive-cruise-control/cart/main_cart.c으로 대치시킨다.

  4. ICNS Lab에서 제작한 카트에 있는 STM-Arm Board, STM-Cart Board에 각 코드를 디버깅한다.


Custom Dataset을 통한 YOLO-v5 Model 학습 방법

  • 데이터셋 수정을 통해 발전된 학습모델 제작을 원할 시 링크 참조

참조


팀원


👆 Back To The Top

This is a repository with the code for the ACL 2019 paper

The Story of Heads This is the official repo for the following papers: (ACL 2019) Analyzing Multi-Head Self-Attention: Specialized Heads Do the Heavy

231 Nov 15, 2022
Differentiable Surface Triangulation

Differentiable Surface Triangulation This is our implementation of the paper Differentiable Surface Triangulation that enables optimization for any pe

61 Dec 07, 2022
Using this you can control your PC/Laptop volume by Hand Gestures (pinch-in, pinch-out) created with Python.

Hand Gesture Volume Controller Using this you can control your PC/Laptop volume by Hand Gestures (pinch-in, pinch-out). Code Firstly I have created a

Tejas Prajapati 16 Sep 11, 2021
pytorch implementation of "Contrastive Multiview Coding", "Momentum Contrast for Unsupervised Visual Representation Learning", and "Unsupervised Feature Learning via Non-Parametric Instance-level Discrimination"

Unofficial implementation: MoCo: Momentum Contrast for Unsupervised Visual Representation Learning (Paper) InsDis: Unsupervised Feature Learning via N

Zhiqiang Shen 16 Nov 04, 2020
A PaddlePaddle version image model zoo.

Paddle-Image-Models English | 简体中文 A PaddlePaddle version image model zoo. Install Package Install by pip: $ pip install ppim Install by wheel package

AgentMaker 131 Dec 07, 2022
PyTorch implementation of neural style transfer algorithm

neural-style-pt This is a PyTorch implementation of the paper A Neural Algorithm of Artistic Style by Leon A. Gatys, Alexander S. Ecker, and Matthias

770 Jan 02, 2023
All the code and files related to the MI-Lab of UE19CS305 course in sem 5

Machine-Intelligence-Lab-CS305 The compilation of all the code an drelated files from MI-Lab UE19CS305 (of batch 2019-2023) offered by PES University

Arvind Krishna 3 Nov 10, 2022
A repo with study material, exercises, examples, etc for Devnet SPAUTO

MPLS in the SDN Era -- DevNet SPAUTO Get right to the study material: Checkout the Wiki! A lab topology based on MPLS in the SDN era book used for 30

Hugo Tinoco 67 Nov 16, 2022
Codes to pre-train T5 (Text-to-Text Transfer Transformer) models pre-trained on Japanese web texts

t5-japanese Codes to pre-train T5 (Text-to-Text Transfer Transformer) models pre-trained on Japanese web texts. The following is a list of models that

Kimio Kuramitsu 1 Dec 13, 2021
Robustness via Cross-Domain Ensembles

Robustness via Cross-Domain Ensembles [ICCV 2021, Oral] This repository contains tools for training and evaluating: Pretrained models Demo code Traini

Visual Intelligence & Learning Lab, Swiss Federal Institute of Technology (EPFL) 27 Dec 23, 2022
Junction Tree Variational Autoencoder for Molecular Graph Generation (ICML 2018)

Junction Tree Variational Autoencoder for Molecular Graph Generation Official implementation of our Junction Tree Variational Autoencoder https://arxi

Wengong Jin 418 Jan 07, 2023
Symbolic Music Generation with Diffusion Models

Symbolic Music Generation with Diffusion Models Supplementary code release for our work Symbolic Music Generation with Diffusion Models. Installation

Magenta 119 Jan 07, 2023
Recursive Bayesian Networks

Recursive Bayesian Networks This repository contains the code to reproduce the results from the NeurIPS 2021 paper Lieck R, Rohrmeier M (2021) Recursi

Robert Lieck 11 Oct 18, 2022
Minimalist Error collection Service compatible with Rollbar clients. Sentry or Rollbar alternative.

Minimalist Error collection Service Features Compatible with any Rollbar client(see https://docs.rollbar.com/docs). Just change the endpoint URL to yo

Haukur Rósinkranz 381 Nov 11, 2022
An open-source Deep Learning Engine for Healthcare that aims to treat & prevent major diseases

AlphaCare Background AlphaCare is a work-in-progress, open-source Deep Learning Engine for Healthcare that aims to treat and prevent major diseases. T

Siraj Raval 44 Nov 05, 2022
InsCLR: Improving Instance Retrieval with Self-Supervision

InsCLR: Improving Instance Retrieval with Self-Supervision This is an official PyTorch implementation of the InsCLR paper. Download Dataset Dataset Im

Zelu Deng 25 Aug 30, 2022
Pun Detection and Location

Pun Detection and Location “The Boating Store Had Its Best Sail Ever”: Pronunciation-attentive Contextualized Pun Recognition Yichao Zhou, Jyun-yu Jia

lawson 3 May 13, 2022
Learning with Noisy Labels via Sparse Regularization, ICCV2021

Learning with Noisy Labels via Sparse Regularization This repository is the official implementation of [Learning with Noisy Labels via Sparse Regulari

Xiong Zhou 38 Oct 20, 2022
InsightFace: 2D and 3D Face Analysis Project on MXNet and PyTorch

InsightFace: 2D and 3D Face Analysis Project on MXNet and PyTorch

Deep Insight 13.2k Jan 06, 2023
BEAMetrics: Benchmark to Evaluate Automatic Metrics in Natural Language Generation

BEAMetrics: Benchmark to Evaluate Automatic Metrics in Natural Language Generation Installing The Dependencies $ conda create --name beametrics python

7 Jul 04, 2022