The repo for reproducing Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study

Related tags

Deep Learningsdr
Overview

ECIR Reproducibility Paper: Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study

This code corresponds to the reproducibility paper: "Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study" and all results gathered from the paper are generated using the code.

Environment setup:

  • This project is implemented and tested only for python version 3.6.12, other python versions are not tested and can not ensure the full run of the results.

First please install the required packages:

pip3 install -r requirements.txt

Query&Eval generation:

First please clone the TAR repository using the command

git clone https://github.com/CLEF-TAR/tar.git

The data that's been used include the following files:

For 2017:
tar/tree/master/2017-TAR/training/qrels/qrel_content_train
tar/tree/master/2017-TAR/testing/qrels/qrel_content_test.txt
Please cat these two files together to make 2017_full.txt

For 2018:
tar/tree/master/2018-TAR/Task2/Training/qrels/full.train.content.2018.qrels
tar/tree/master/2018-TAR/Task2/Testing/qrels/full.test.content.2018.qrels
Please cat these two files together to make 2018_full.txt

For 2019:
tar/tree/master/2019-TAR/Task2/Training/Intervention/qrels/full.train.int.content.2019.qrels
tar/tree/master/2019-TAR/Task2/Testing/Intervention/qrels/full.test.int.content.2019.qrels
Please cat these two files together to make 2019_full.txt, and also 2019_test.txt (note for 2019 these two will be the same)

Then you can generate query and evaluation files by:

For snigle:
python3 topic_query_generation.py --input_qrel qrel_file_for_training+testing --input_test_qrel qrel_file_for_testing --DATA_DIR output_dir

For multiple:
python3 topic_query_generation_multiple.py --input_qrel qrel_file_for_training+testing --input_test_qrel qrel_file_for_testing --DATA_DIR output_dir

Please note: you need to generate for each year and put it in a separate folder, not the overall one.

Collection generation:

For BOW collection generation, the following command is needed

python3 gather_all_pids.py --filenames 2017_full.txt+2018_full.txt+2019_full.txt --output_dir collection/pid_dir --chunks n
python3 collection_gathering.py --filename yourpidsfile --email [email protected] --output output_collection
python3 collection_processing.py --input_collection acquired_collection_file --output_collection processed_file(default is weighted1_bow.jsonl)

Then for BOC collection generation:

  • First ensure to check Quickumls to gather umls data.
  • Second ensure to register on NCBO to get api keys, and fill in these keys in ncbo_request_word.py
  • For BOC collection then, run the following command to generation boc_collection:
python3 ncbo_request_word.py --input_collection your_generated_bow_collection --num_workers for_multi_procesing --generated_collection output_dir_ncbo
cat output_dir/* > ncbo.tsv
python3 processing_uml.py --input_collection your_bow_collection --input_umls_dir your_output_umls_dir --num_workers for_multi_procesing
python3 processing_umls_word.py --input_collection your_generated_bow_collection --input_umls_dir your_output_umls_dir_from_last_step --output_file umls.tsv
python3 boc_extraction.py --input_collection bow_collection --input_ncbo_collection ncbo.tsv --input_umls_collection umls.tsv --output_collection processed_file(default is weighted1_boc.jsonl)

RQ1: Does the effectiveness of SDR generalise beyond the CLEF TAR 2017 dataset?

For RQ1, single seed driven results are acquired for clef tar 2017, 2018, 2019, for this please run the following command.

bash search.sh 2017_single_data_dir all
bash search.sh 2018_single_data_dir test
bash search.sh 2019_single_data_dir test

to get the run_file of all three years single seed run_file with all methods.

Then evaluation by:

bash evaluation_full.sh 2017_single_data_dir all
bash evaluation_full.sh 2018_single_data_dir test
bash evaluation_full.sh 2019_single_data_dir test

to print out evaluation measures and also save evaluation measurement files in the corresponding eval folder

RQ2: What is the impact of using multiple seed studies collectively on the effectiveness of SDR?

For RQ2, multiple seed driven results are acquired for clef tar 2017, 2018, 2019, for this please run the following command.

bash search_multiple.sh 2017_multiple_data_dir all
bash search_multiple.sh 2018_multiple_data_dir test
bash search_multiple.sh 2019_multiple_data_dir test

to get the run_file of all three years multiple seed run_file with all methods.

Then evaluation by:

bash evaluation_full.sh 2017_multiple_data_dir all
bash evaluation_full.sh 2018_multiple_data_dir test
bash evaluation_full.sh 2019_multiple_data_dir test

to print out evaluation measures and also save evaluation measurement files in the corresponding eval folder

RQ3: To what extent do seed studies impact the ranking stability of single- and multi-SDR?

For this question, we need to use the results acquired from the last two steps, in which we can generate variability graphs by using the following command:

python3 graph_making/distribution_graph.py --year 2017 --type oracle 
python3 graph_making/distribution_graph.py --year 2018 --type oracle 
python3 graph_making/distribution_graph.py --year 2019 --type oracle 

to get distribution graphs of the three years.

Generated run files:

Run files are generated and stored in here, feel free to download for verification or futher research needs.

Example:
run_files/2017/all: 2017 single seed results file
run_files/2017/multiple: 2017 multiple seed results file

Owner
ielab
The Information Engineering Lab
ielab
A simple Rock-Paper-Scissors game using CV in python

ML18_Rock-Paper-Scissors-using-CV A simple Rock-Paper-Scissors game using CV in python For IITISOC-21 Rules and procedure to play the interactive game

Anirudha Bhagwat 3 Aug 08, 2021
A research toolkit for particle swarm optimization in Python

PySwarms is an extensible research toolkit for particle swarm optimization (PSO) in Python. It is intended for swarm intelligence researchers, practit

Lj Miranda 1k Dec 30, 2022
Practical tutorials and labs for TensorFlow used by Nvidia, FFN, CNN, RNN, Kaggle, AE

TensorFlow Tutorial - used by Nvidia Learn TensorFlow from scratch by examples and visualizations with interactive jupyter notebooks. Learn to compete

Alexander R Johansen 1.9k Dec 19, 2022
Deep Learning to Create StepMania SM FIles

StepCOVNet Running Audio to SM File Generator Currently only produces .txt files. Use SMDataTools to convert .txt to .sm python stepmania_note_generat

Chimezie Iwuanyanwu 8 Jan 08, 2023
An end-to-end library for editing and rendering motion of 3D characters with deep learning [SIGGRAPH 2020]

Deep-motion-editing This library provides fundamental and advanced functions to work with 3D character animation in deep learning with Pytorch. The co

1.2k Dec 29, 2022
VQGAN+CLIP Colab Notebook with user-friendly interface.

VQGAN+CLIP and other image generation system VQGAN+CLIP Colab Notebook with user-friendly interface. Latest Notebook: Mse regulized zquantize Notebook

Justin John 227 Jan 05, 2023
Privacy-Preserving Portrait Matting [ACM MM-21]

Privacy-Preserving Portrait Matting [ACM MM-21] This is the official repository of the paper Privacy-Preserving Portrait Matting. Jizhizi Li∗, Sihan M

Jizhizi_Li 212 Dec 27, 2022
Neural style in TensorFlow! 🎨

neural-style An implementation of neural style in TensorFlow. This implementation is a lot simpler than a lot of the other ones out there, thanks to T

Anish Athalye 5.5k Dec 29, 2022
A large-scale video dataset for the training and evaluation of 3D human pose estimation models

ASPset-510 (Australian Sports Pose Dataset) is a large-scale video dataset for the training and evaluation of 3D human pose estimation models. It contains 17 different amateur subjects performing 30

Aiden Nibali 25 Jun 20, 2021
Kaggle | 9th place single model solution for TGS Salt Identification Challenge

UNet for segmenting salt deposits from seismic images with PyTorch. General We, tugstugi and xuyuan, have participated in the Kaggle competition TGS S

Erdene-Ochir Tuguldur 276 Dec 20, 2022
Official repository of "DeepMIH: Deep Invertible Network for Multiple Image Hiding", TPAMI 2022.

DeepMIH: Deep Invertible Network for Multiple Image Hiding (TPAMI 2022) This repo is the official code for DeepMIH: Deep Invertible Network for Multip

Junpeng Jing 67 Nov 22, 2022
Learning based AI for playing multi-round Koi-Koi hanafuda card games. Have fun.

Koi-Koi AI Learning based AI for playing multi-round Koi-Koi hanafuda card games. Platform Python PyTorch PySimpleGUI (for the interface playing vs AI

Sanghai Guan 10 Nov 20, 2022
Neural network pruning for finding a sparse computational model for controlling a biological motor task.

MothPruning Scientific Overview Originally inspired by biological nervous systems, deep neural networks (DNNs) are powerful computational tools for mo

Olivia Thomas 0 Dec 14, 2022
MixText: Linguistically-Informed Interpolation of Hidden Space for Semi-Supervised Text Classification

MixText This repo contains codes for the following paper: Jiaao Chen, Zichao Yang, Diyi Yang: MixText: Linguistically-Informed Interpolation of Hidden

GT-SALT 309 Dec 12, 2022
public repo for ESTER dataset and modeling (EMNLP'21)

Project / Paper Introduction This is the project repo for our EMNLP'21 paper: https://arxiv.org/abs/2104.08350 Here, we provide brief descriptions of

PlusLab 19 Oct 27, 2022
QAHOI: Query-Based Anchors for Human-Object Interaction Detection (paper)

QAHOI QAHOI: Query-Based Anchors for Human-Object Interaction Detection (paper) Requirements PyTorch = 1.5.1 torchvision = 0.6.1 pip install -r requ

38 Dec 29, 2022
Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization

Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization Official PyTorch implementation for our URST (Ultra-Resolution Sty

czczup 148 Dec 27, 2022
[NeurIPS 2020] Official Implementation: "SMYRF: Efficient Attention using Asymmetric Clustering".

SMYRF: Efficient attention using asymmetric clustering Get started: Abstract We propose a novel type of balanced clustering algorithm to approximate a

Giannis Daras 46 Dec 22, 2022
Parallel Latent Tree-Induction for Faster Sequence Encoding

FastTrees This repository contains the experimental code supporting the FastTrees paper by Bill Pung. Software Requirements Python 3.6, NLTK and PyTor

Bill Pung 4 Mar 29, 2022
Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation

Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation Introduction This is a PyTorch

XMed-Lab 30 Sep 23, 2022