This repository contains a streaming Dataflow pipeline written in Python with Apache Beam, reading data from PubSub.

Overview

Sample streaming Dataflow pipeline written in Python

This repository contains a streaming Dataflow pipeline written in Python with Apache Beam, reading data from PubSub.

For more details, see the following Beam Summit 2021 talk:

To run this pipeline, you need to have the SDK installed, and a project in Google Cloud Platform, even if you run the pipeline locally with the direct runner:

Description of the pipeline

Data input

We are using here a public PubSub topic with data, so we don't need to setup our own to run this pipeline.

The topic is projects/pubsub-public-data/topics/taxirides-realtime.

That topic contains messages from the NYC Taxi Ride dataset. Here is a sample of the data contained in a message in that topic:

{
  "ride_id": "328bec4b-0126-42d4-9381-cb1dbf0e2432",
  "point_idx": 305,
  "latitude": 40.776270000000004,
  "longitude": -73.99111,
  "timestamp": "2020-03-27T21:32:51.48098-04:00",
  "meter_reading": 9.403651,
  "meter_increment": 0.030831642,
  "ride_status": "enroute",
  "passenger_count": 1
}

But the messages also contain metadata, that is useful for streaming pipelines. In this case, the messages contain an attribute of name ts, which contains the same timestamp as the field of name timestamp in the data. Remember that PubSub treats the data as just a string of bytes, so it does not know anything about the data itself. The metadata fields are normally used to publish messages with specific ids and/or timestamps.

To inspect the messages from this topic, you can create a subscription, and then pull some messages.

To create a subscription, use the gcloud cli utility (installed by default in the Cloud Shell):

export TOPIC=projects/pubsub-public-data/topics/taxirides-realtime
gcloud pubsub subscriptions create taxis --topic $TOPIC

To pull messages:

gcloud pubsub subscriptions pull taxis --limit 3

or if you have jq (for pretty printing of JSON)

gcloud pubsub subscriptions pull taxis --limit 3 | grep " {" | cut -f 2 -d ' ' | jq

Pay special attention to the Attributes column (metadata). You will see that the timestamp included as a field in the metadata, as well as in the data. We will leverage that metadata field for the timestamps used in our streaming pipeline.

Data output

This pipeline writes the output to BigQuery, in streaming append-only mode.

The destination tables must exist prior to running the pipeline.

If you have the GCloud cli utility installed (for instance, it is installed by default in the Cloud Shell), you can create the tables from the command line.

You need to create a BigQuery dataset too, in the same region:

After that, you can create the destination tables with the provided script

./scripts/create_tables.sh taxi_rides

Algorithm / business rules

We are using a session window with a gap of 10 seconds. That means that all the messages with the same ride_id will be grouped together, as long as their timestamps are 10 seconds within each other. Any message with a timestamp more than 10 seconds apart will be discarded (for old timestamps) or will open a new window (for newer timestamps).

With the messages inside each window (that is, each different ride_id will be part of a different window), we will calculate the duration of the session, as the difference between the min and max timestamps in the window. We will also calculate the number of events in that session.

We will use a GroupByKey to operate with all the messages in a window. This will load all the messages in the window into memory. This is fine, as in Beam streaming, a window is always processed in a worker (windows cannot be split across different workers).

This is an example of the kind of logic that can be implemented leveraging windows in streaming pipelines. This grouping of messages across ride_id and event timestamps is automatically done by the pipeline, and we just need to express the generic operations to be performed with each window, as part of our pipeline.

Running the pipeline

Prerequirements

You need to have a Google Cloud project, and the gcloud SDK configured to run the pipeline. For instance, you could run it from the Cloud Shell in Google Cloud Platform (gcloud would be automatically configured).

Then you need to create a Google Cloud Storage bucket, with the same name as your project id, and in the same region where you will run Dataflow:

Make sure that you have a Python environment with Python 3 (<3.9). For instance a virtualenv, and install apache-beam[gcp] and python-dateutil in your local environment. For instance, assuming that you are running in a virtualenv:

pip install "apache-beam[gcp]" python-dateutil

Run the pipeline

Once the tables are created and the dependencies installed, edit scripts/launch_dataflow_runner.sh and set your project id and region, and then run it with:

./scripts/launch_dataflow_runner.sh

The outputs will be written to the BigQuery tables, and in the profile directory in your bucket you should see Python gprof files with profiling information.

CPU profiling

Beam uses the Python profiler to produce files in Python gprof format. You will need some scripting to interpret those files and extracts insights out of them.

In this repository, you will find some sample output in data/beam.prof, that you can use to check what the profiling output looks like. Use the following Colab notebook with an example analyzing that sample profiling data:

Refer to this post for more details about how to interpret that file:

License

Copyright 2021 Israel Herraiz

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Owner
Israel Herraiz
Strategic Cloud Engineer @GoogleCloudPlatform
Israel Herraiz
Compute and visualise incidence (reworking of the original incidence package)

incidence2 incidence2 is an R package that implements functions and classes to compute, handle and visualise incidence from linelist data. It refocuss

15 Nov 22, 2022
Python scripts for plotting audiograms and related data from Interacoustics Equinox audiometer and Otoaccess software.

audiometry Python scripts for plotting audiograms and related data from Interacoustics Equinox 2.0 audiometer and Otoaccess software. Maybe similar sc

Hamilton Lab at UT Austin 2 Jun 15, 2022
Sentiment Analysis application created with Python and Dash, hosted at socialsentiment.net

Social Sentiment Dash Application Live-streaming sentiment analysis application created with Python and Dash, hosted at SocialSentiment.net. Dash Tuto

Harrison 456 Dec 25, 2022
A grammar of graphics for Python

plotnine Latest Release License DOI Build Status Coverage Documentation plotnine is an implementation of a grammar of graphics in Python, it is based

Hassan Kibirige 3.3k Jan 01, 2023
The windML framework provides an easy-to-use access to wind data sources within the Python world, building upon numpy, scipy, sklearn, and matplotlib. Renewable Wind Energy, Forecasting, Prediction

windml Build status : The importance of wind in smart grids with a large number of renewable energy resources is increasing. With the growing infrastr

Computational Intelligence Group 125 Dec 24, 2022
An open-source plotting library for statistical data.

Lets-Plot Lets-Plot is an open-source plotting library for statistical data. It is implemented using the Kotlin programming language. The design of Le

JetBrains 820 Jan 06, 2023
Chem: collection of mostly python code for molecular visualization, QM/MM, FEP, etc

chem: collection of mostly python code for molecular visualization, QM/MM, FEP,

5 Sep 02, 2022
Tools for calculating and visualizing Elo-like ratings of MLB teams using Retosheet data

Overview This project uses historical baseball games data to calculate an Elo-like rating for MLB teams based on regular season match ups. The Elo rat

Lukas Owens 0 Aug 25, 2021
Show Data: Show your dataset in web browser!

Show Data is to generate html tables for large scale image dataset, especially for the dataset in remote server. It provides some useful commond line tools and fully customizeble API reference to gen

Dechao Meng 83 Nov 26, 2022
Geospatial Data Visualization using PyGMT

Example script to visualize topographic data, earthquake data, and tomographic data on a map

Utpal Kumar 2 Jul 30, 2022
Fast scatter density plots for Matplotlib

About Plotting millions of points can be slow. Real slow... 😴 So why not use density maps? ⚡ The mpl-scatter-density mini-package provides functional

Thomas Robitaille 473 Dec 12, 2022
Graphical display tools, to help students debug their class implementations in the Carcassonne family of projects

carcassonne_tools Graphical display tools, to help students debug their class implementations in the Carcassonne family of projects NOTE NOTE NOTE The

1 Nov 08, 2021
Visualizations of some specific solutions of different differential equations.

Diff_sims Visualizations of some specific solutions of different differential equations. Heat Equation in 1 Dimension (A very beautiful and elegant ex

2 Jan 13, 2022
Comparing USD and GBP Exchange Rates

Currency Data Visualization Comparing USD and GBP Exchange Rates This is a bar graph comparing GBP and USD exchange rates. I chose blue for the UK bec

5 Oct 28, 2021
Using SQLite within Python to create database and analyze Starcraft 2 units data (Pandas also used)

SQLite python Starcraft 2 English This project shows the usage of SQLite with python. To create, modify and communicate with the SQLite database from

1 Dec 30, 2021
Python package that generates hardware pinout diagrams as SVG images

PinOut A Python package that generates hardware pinout diagrams as SVG images. The package is designed to be quite flexible and works well for general

336 Dec 20, 2022
This tool is designed to help administrators get an overview of their Active Directory structure.

This tool is designed to help administrators get an overview of their Active Directory structure. In the group view you can see all elements of an AD (OU, USER, GROUPS, COMPUTERS etc.). In the user v

deexno 2 Oct 30, 2022
:art: Diagram as Code for prototyping cloud system architectures

Diagrams Diagram as Code. Diagrams lets you draw the cloud system architecture in Python code. It was born for prototyping a new system architecture d

MinJae Kwon 27.5k Dec 30, 2022
Massively parallel self-organizing maps: accelerate training on multicore CPUs, GPUs, and clusters

Somoclu Somoclu is a massively parallel implementation of self-organizing maps. It exploits multicore CPUs, it is able to rely on MPI for distributing

Peter Wittek 239 Nov 10, 2022
Data visualization electromagnetic spectrum

Datenvisualisierung-Elektromagnetischen-Spektrum Anhand des Moduls matplotlib sollen die Daten des elektromagnetischen Spektrums dargestellt werden. D

Pulsar 1 Sep 01, 2022