Apache Spark & Python (pySpark) tutorials for Big Data Analysis and Machine Learning as IPython / Jupyter notebooks

Overview

Spark Python Notebooks

Join the chat at https://gitter.im/jadianes/spark-py-notebooks

This is a collection of IPython notebook/Jupyter notebooks intended to train the reader on different Apache Spark concepts, from basic to advanced, by using the Python language.

If Python is not your language, and it is R, you may want to have a look at our R on Apache Spark (SparkR) notebooks instead. Additionally, if your are interested in being introduced to some basic Data Science Engineering, you might find these series of tutorials interesting. There we explain different concepts and applications using Python and R.

Instructions

A good way of using these notebooks is by first cloning the repo, and then starting your own IPython notebook/Jupyter in pySpark mode. For example, if we have a standalone Spark installation running in our localhost with a maximum of 6Gb per node assigned to IPython:

MASTER="spark://127.0.0.1:7077" SPARK_EXECUTOR_MEMORY="6G" IPYTHON_OPTS="notebook --pylab inline" ~/spark-1.5.0-bin-hadoop2.6/bin/pyspark

Notice that the path to the pyspark command will depend on your specific installation. So as requirement, you need to have Spark installed in the same machine you are going to start the IPython notebook server.

For more Spark options see here. In general it works the rule of passing options described in the form spark.executor.memory as SPARK_EXECUTOR_MEMORY when calling IPython/pySpark.

Datasets

We will be using datasets from the KDD Cup 1999. The results of this competition can be found here.

References

The reference book for these and other Spark related topics is:

  • Learning Spark by Holden Karau, Andy Konwinski, Patrick Wendell, and Matei Zaharia.

Notebooks

The following notebooks can be examined individually, although there is a more or less linear 'story' when followed in sequence. By using the same dataset they try to solve a related set of tasks with it.

RDD creation

About reading files and parallelize.

RDDs basics

A look at map, filter, and collect.

Sampling RDDs

RDD sampling methods explained.

RDD set operations

Brief introduction to some of the RDD pseudo-set operations.

Data aggregations on RDDs

RDD actions reduce, fold, and aggregate.

Working with key/value pair RDDs

How to deal with key/value pairs in order to aggregate and explore data.

MLlib: Basic Statistics and Exploratory Data Analysis

A notebook introducing Local Vector types, basic statistics in MLlib for Exploratory Data Analysis and model selection.

MLlib: Logistic Regression

Labeled points and Logistic Regression classification of network attacks in MLlib. Application of model selection techniques using correlation matrix and Hypothesis Testing.

MLlib: Decision Trees

Use of tree-based methods and how they help explaining models and feature selection.

Spark SQL: structured processing for Data Analysis

In this notebook a schema is inferred for our network interactions dataset. Based on that, we use Spark's SQL DataFrame abstraction to perform a more structured exploratory data analysis.

Applications

Beyond the basics. Close to real-world applications using Spark and other technologies.

Olssen: On-line Spectral Search ENgine for proteomics

Same tech stack this time with an AngularJS client app.

An on-line movie recommendation web service

This tutorial can be used independently to build a movie recommender model based on the MovieLens dataset. Most of the code in the first part, about how to use ALS with the public MovieLens dataset, comes from my solution to one of the exercises proposed in the CS100.1x Introduction to Big Data with Apache Spark by Anthony D. Joseph on edX, that is also publicly available since 2014 at Spark Summit.

There I've added with minor modifications to use a larger dataset and also code about how to store and reload the model for later use. On top of that we build a Flask web service so the recommender can be use to provide movie recommendations on-line.

KDD Cup 1999

My try using Spark with this classic dataset and Knowledge Discovery competition.

Contributing

Contributions are welcome! For bug reports or requests please submit an issue.

Contact

Feel free to contact me to discuss any issues, questions, or comments.

License

This repository contains a variety of content; some developed by Jose A. Dianes, and some from third-parties. The third-party content is distributed under the license provided by those parties.

The content developed by Jose A. Dianes is distributed under the following license:

Copyright 2016 Jose A Dianes

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Owner
Jose A Dianes
Principal Data Scientist at Mosaic Therapeutics.
Jose A Dianes
A machine learning toolkit dedicated to time-series data

tslearn The machine learning toolkit for time series analysis in Python Section Description Installation Installing the dependencies and tslearn Getti

2.3k Dec 29, 2022
Code base of KU AIRS: SPARK Autonomous Vehicle Team

KU AIRS: SPARK Autonomous Vehicle Project Check this link for the blog post describing this project and the video of SPARK in simulation and on parkou

Mehmet Enes Erciyes 1 Nov 23, 2021
Temporal Alignment Prediction for Supervised Representation Learning and Few-Shot Sequence Classification

Temporal Alignment Prediction for Supervised Representation Learning and Few-Shot Sequence Classification Introduction. This package includes the pyth

5 Dec 06, 2022
Regularization and Feature Selection in Least Squares Temporal Difference Learning

Regularization and Feature Selection in Least Squares Temporal Difference Learning Description This is Python implementations of Least Angle Regressio

Mina Parham 0 Jan 18, 2022
Toolkit for building machine learning models that generalize to unseen domains and are robust to privacy and other attacks.

Toolkit for Building Robust ML models that generalize to unseen domains (RobustDG) Divyat Mahajan, Shruti Tople, Amit Sharma Privacy & Causal Learning

Microsoft 149 Jan 06, 2023
Responsible Machine Learning with Python

Examples of techniques for training interpretable ML models, explaining ML models, and debugging ML models for accuracy, discrimination, and security.

ph_ 624 Jan 06, 2023
To-Be is a machine learning challenge on CodaLab Platform about Mortality Prediction

To-Be is a machine learning challenge on CodaLab Platform about Mortality Prediction. The challenge aims to adress the problems of medical imbalanced data classification.

Marwan Mashra 1 Jan 31, 2022
Python Extreme Learning Machine (ELM) is a machine learning technique used for classification/regression tasks.

Python Extreme Learning Machine (ELM) Python Extreme Learning Machine (ELM) is a machine learning technique used for classification/regression tasks.

Augusto Almeida 84 Nov 25, 2022
BudouX is the successor to Budou, the machine learning powered line break organizer tool.

BudouX Standalone. Small. Language-neutral. BudouX is the successor to Budou, the machine learning powered line break organizer tool. It is standalone

Google 868 Jan 05, 2023
A benchmark of data-centric tasks from across the machine learning lifecycle.

A benchmark of data-centric tasks from across the machine learning lifecycle.

61 Dec 28, 2022
Predicting Keystrokes using an Audio Side-Channel Attack and Machine Learning

Predicting Keystrokes using an Audio Side-Channel Attack and Machine Learning My

3 Apr 10, 2022
A basic Ray Tracer that exploits numpy arrays and functions to work fast.

Python-Fast-Raytracer A basic Ray Tracer that exploits numpy arrays and functions to work fast. The code is written keeping as much readability as pos

Rafael de la Fuente 393 Dec 27, 2022
This machine learning model was developed for House Prices

This machine learning model was developed for House Prices - Advanced Regression Techniques competition in Kaggle by using several machine learning models such as Random Forest, XGBoost and LightGBM.

serhat_derya 1 Mar 02, 2022
Implementation of the Object Relation Transformer for Image Captioning

Object Relation Transformer This is a PyTorch implementation of the Object Relation Transformer published in NeurIPS 2019. You can find the paper here

Yahoo 158 Dec 24, 2022
Given the names and grades for each student in a class N of students, store them in a nested list and print the name(s) of any student(s) having the second lowest grade.

Hackerank-Nested-List Given the names and grades for each student in a class N of students, store them in a nested list and print the name(s) of any s

Sangeeth Mathew John 2 Dec 14, 2021
Formulae is a Python library that implements Wilkinson's formulas for mixed-effects models.

formulae formulae is a Python library that implements Wilkinson's formulas for mixed-effects models. The main difference with other implementations li

34 Dec 21, 2022
A naive Bayes model for cancer classification using a set of documents

Naivebayes text classifcation model for cancer and noncancer documents Author: Alex King Purpose Requirements/files included How to use 1. Purpose The

Alex W King 1 Nov 24, 2021
BioPy is a collection (in-progress) of biologically-inspired algorithms written in Python

BioPy is a collection (in-progress) of biologically-inspired algorithms written in Python. Some of the algorithms included are mor

Jared M. Smith 40 Aug 26, 2022
AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications.

AutoTabular AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just

wenqi 2 Jun 26, 2022
Python factor analysis library (PCA, CA, MCA, MFA, FAMD)

Prince is a library for doing factor analysis. This includes a variety of methods including principal component analysis (PCA) and correspondence anal

Max Halford 915 Dec 31, 2022