Code to reproduce the results in the paper "Tensor Component Analysis for Interpreting the Latent Space of GANs".

Overview

Tensor Component Analysis for Interpreting the Latent Space of GANs

[ paper | project page ]

Code to reproduce the results in the paper "Tensor Component Analysis for Interpreting the Latent Space of GANs".

./images/teaser.png

dependencies

Firstly, to install the required packages, please run:

$ pip install -r requirements.txt

Pretrained weights

To replicate the results in the paper, you'll need to first download the pre-trained weights. To do so, simply run this from the command line:

./download_weights.sh

Quantitative results

building the prediction matrices

To reproduce Fig. 5, one can then run the ./quant.ipynb notebook using the pre-computed classification scores (please see this notebook for more details).

manually computing predictions

To call the Microsoft Azure Face API to generate the predictions again from scratch, one can run the shell script in ./quant/classify.sh. Firstly however, you need to generate our synthetic images to classify, which we detail below.

Qualitative results

generating the images

Reproducing the qualitative results (i.e. in Fig. 6) involves generating synthetic faces and 3 edited versions with the 3 attributes of interest (hair colour, yaw, and pitch). To generate these images (which are also used for the quantitative results), simply run:

$ ./generate_quant_edits.sh

mode-wise edits

./images/116-blonde.gif ./images/116-yaw.gif ./images/116-pitch.gif

Manual edits along individual modes of the tensor are made by calling main.py with the --mode edit_modewise flag. For example, one can reproduce the images from Fig. 3 with:

$ python main.py --cp_rank 0 --tucker_ranks "4,4,4,512" --model_name pggan_celebahq1024 --penalty_lam 0.001 --resume_iters 1000
  --n_to_edit 10 \
  --mode edit_modewise \
  --attribute_to_edit male

multilinear edits

./images/thick.gif

Edits achieved with the 'multilinear mixing' are achieved instead by loading the relevant weights and supplying the --mode edit_multilinear flag. For example, the images in Fig. 4 are generated with:

$ python main.py --cp_rank 0 --tucker_ranks "256,4,4,512" --model_name pggan_celebahq1024 --penalty_lam 0.001 --resume_iters 200000
  --n_to_edit 10 \
  --mode edit_multilinear \
  --attribute_to_edit thick

Please feel free to get in touch at: [email protected], where x=oldfield


credits

All the code in ./architectures/ and utils.py is directly imported from https://github.com/genforce/genforce, only lightly modified to support performing the forward pass through the models partially, and returning the intermediate tensors.

The structure of the codebase follows https://github.com/yunjey/stargan, and hence we use their code as a template to build off. For this reason, you will find small helper functions (e.g. the first few lines of main.py) are borrowed from the StarGAN codebase.

Owner
James Oldfield
James Oldfield
A Survey on Deep Learning Technique for Video Segmentation

A Survey on Deep Learning Technique for Video Segmentation A Survey on Deep Learning Technique for Video Segmentation Wenguan Wang, Tianfei Zhou, Fati

Tianfei Zhou 112 Dec 12, 2022
CLEAR algorithm for multi-view data association

CLEAR: Consistent Lifting, Embedding, and Alignment Rectification Algorithm The Matlab, Python, and C++ implementation of the CLEAR algorithm, as desc

MIT Aerospace Controls Laboratory 30 Jan 02, 2023
Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification (NeurIPS 2021)

Graph Posterior Network This is the official code repository to the paper Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classifica

Maximilian Stadler 30 Dec 05, 2022
Delving into Localization Errors for Monocular 3D Object Detection, CVPR'2021

Delving into Localization Errors for Monocular 3D Detection By Xinzhu Ma, Yinmin Zhang, Dan Xu, Dongzhan Zhou, Shuai Yi, Haojie Li, Wanli Ouyang. Intr

XINZHU.MA 124 Jan 04, 2023
Improving Generalization Bounds for VC Classes Using the Hypergeometric Tail Inversion

Improving Generalization Bounds for VC Classes Using the Hypergeometric Tail Inversion Preface This directory provides an implementation of the algori

Jean-Samuel Leboeuf 0 Nov 03, 2021
DeepDiffusion: Unsupervised Learning of Retrieval-adapted Representations via Diffusion-based Ranking on Latent Feature Manifold

DeepDiffusion Introduction This repository provides the code of the DeepDiffusion algorithm for unsupervised learning of retrieval-adapted representat

4 Nov 15, 2022
Pytorch implementation of "Training a 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet"

Token Labeling: Training an 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet (arxiv) This is a Pytorch implementation of our te

蒋子航 383 Dec 27, 2022
PIKA: a lightweight speech processing toolkit based on Pytorch and (Py)Kaldi

PIKA: a lightweight speech processing toolkit based on Pytorch and (Py)Kaldi PIKA is a lightweight speech processing toolkit based on Pytorch and (Py)

336 Nov 25, 2022
Iterative Training: Finding Binary Weight Deep Neural Networks with Layer Binarization

Iterative Training: Finding Binary Weight Deep Neural Networks with Layer Binarization This repository contains the source code for the paper (link wi

Rakuten Group, Inc. 0 Nov 19, 2021
Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data - Official PyTorch Implementation (CVPR 2022)

Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data (CVPR 2022) Potentials of primitive shapes f

31 Sep 27, 2022
code for TCL: Vision-Language Pre-Training with Triple Contrastive Learning, CVPR 2022

Vision-Language Pre-Training with Triple Contrastive Learning, CVPR 2022 News (03/16/2022) upload retrieval checkpoints finetuned on COCO and Flickr T

187 Jan 02, 2023
PyTorch implementation of our ICCV 2019 paper: Liquid Warping GAN: A Unified Framework for Human Motion Imitation, Appearance Transfer and Novel View Synthesis

Impersonator PyTorch implementation of our ICCV 2019 paper: Liquid Warping GAN: A Unified Framework for Human Motion Imitation, Appearance Transfer an

SVIP Lab 1.7k Jan 06, 2023
[ICCV 2021] Learning A Single Network for Scale-Arbitrary Super-Resolution

ArbSR Pytorch implementation of "Learning A Single Network for Scale-Arbitrary Super-Resolution", ICCV 2021 [Project] [arXiv] Highlights A plug-in mod

Longguang Wang 229 Dec 30, 2022
Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks

This is the code associated with the paper Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks, published at CVPR 2020.

Thomas Roddick 219 Dec 20, 2022
Demo for Real-time RGBD-based Extended Body Pose Estimation paper

Real-time RGBD-based Extended Body Pose Estimation This repository is a real-time demo for our paper that was published at WACV 2021 conference The ou

Renat Bashirov 118 Dec 26, 2022
Not Suitable for Work (NSFW) classification using deep neural network Caffe models.

Open nsfw model This repo contains code for running Not Suitable for Work (NSFW) classification deep neural network Caffe models. Please refer our blo

Yahoo 5.6k Jan 05, 2023
CAPRI: Context-Aware Interpretable Point-of-Interest Recommendation Framework

CAPRI: Context-Aware Interpretable Point-of-Interest Recommendation Framework This repository contains a framework for Recommender Systems (RecSys), a

RecSys Lab 8 Jul 03, 2022
Black box hyperparameter optimization made easy.

BBopt BBopt aims to provide the easiest hyperparameter optimization you'll ever do. Think of BBopt like Keras (back when Theano was still a thing) for

Evan Hubinger 70 Nov 03, 2022
COD-Rank-Localize-and-Segment (CVPR2021)

COD-Rank-Localize-and-Segment (CVPR2021) Simultaneously Localize, Segment and Rank the Camouflaged Objects Full camouflage fixation training dataset i

JingZhang 52 Dec 20, 2022