Code to reproduce the results in the paper "Tensor Component Analysis for Interpreting the Latent Space of GANs".

Overview

Tensor Component Analysis for Interpreting the Latent Space of GANs

[ paper | project page ]

Code to reproduce the results in the paper "Tensor Component Analysis for Interpreting the Latent Space of GANs".

./images/teaser.png

dependencies

Firstly, to install the required packages, please run:

$ pip install -r requirements.txt

Pretrained weights

To replicate the results in the paper, you'll need to first download the pre-trained weights. To do so, simply run this from the command line:

./download_weights.sh

Quantitative results

building the prediction matrices

To reproduce Fig. 5, one can then run the ./quant.ipynb notebook using the pre-computed classification scores (please see this notebook for more details).

manually computing predictions

To call the Microsoft Azure Face API to generate the predictions again from scratch, one can run the shell script in ./quant/classify.sh. Firstly however, you need to generate our synthetic images to classify, which we detail below.

Qualitative results

generating the images

Reproducing the qualitative results (i.e. in Fig. 6) involves generating synthetic faces and 3 edited versions with the 3 attributes of interest (hair colour, yaw, and pitch). To generate these images (which are also used for the quantitative results), simply run:

$ ./generate_quant_edits.sh

mode-wise edits

./images/116-blonde.gif ./images/116-yaw.gif ./images/116-pitch.gif

Manual edits along individual modes of the tensor are made by calling main.py with the --mode edit_modewise flag. For example, one can reproduce the images from Fig. 3 with:

$ python main.py --cp_rank 0 --tucker_ranks "4,4,4,512" --model_name pggan_celebahq1024 --penalty_lam 0.001 --resume_iters 1000
  --n_to_edit 10 \
  --mode edit_modewise \
  --attribute_to_edit male

multilinear edits

./images/thick.gif

Edits achieved with the 'multilinear mixing' are achieved instead by loading the relevant weights and supplying the --mode edit_multilinear flag. For example, the images in Fig. 4 are generated with:

$ python main.py --cp_rank 0 --tucker_ranks "256,4,4,512" --model_name pggan_celebahq1024 --penalty_lam 0.001 --resume_iters 200000
  --n_to_edit 10 \
  --mode edit_multilinear \
  --attribute_to_edit thick

Please feel free to get in touch at: [email protected], where x=oldfield


credits

All the code in ./architectures/ and utils.py is directly imported from https://github.com/genforce/genforce, only lightly modified to support performing the forward pass through the models partially, and returning the intermediate tensors.

The structure of the codebase follows https://github.com/yunjey/stargan, and hence we use their code as a template to build off. For this reason, you will find small helper functions (e.g. the first few lines of main.py) are borrowed from the StarGAN codebase.

Owner
James Oldfield
James Oldfield
CVPR2022 paper "Dense Learning based Semi-Supervised Object Detection"

[CVPR2022] DSL: Dense Learning based Semi-Supervised Object Detection DSL is the first work on Anchor-Free detector for Semi-Supervised Object Detecti

Bhchen 69 Dec 08, 2022
Official implementation of our paper "LLA: Loss-aware Label Assignment for Dense Pedestrian Detection" in Pytorch.

LLA: Loss-aware Label Assignment for Dense Pedestrian Detection This project provides an implementation for "LLA: Loss-aware Label Assignment for Dens

35 Dec 06, 2022
Camera Distortion-aware 3D Human Pose Estimation in Video with Optimization-based Meta-Learning

Camera Distortion-aware 3D Human Pose Estimation in Video with Optimization-based Meta-Learning This is the official repository of "Camera Distortion-

Hanbyel Cho 12 Oct 06, 2022
Wav2Vec for speech recognition, classification, and audio classification

Soxan در زبان پارسی به نام سخن This repository consists of models, scripts, and notebooks that help you to use all the benefits of Wav2Vec 2.0 in your

Mehrdad Farahani 140 Dec 15, 2022
Autoencoder - Reducing the Dimensionality of Data with Neural Network

autoencoder Implementation of the Reducing the Dimensionality of Data with Neural Network – G. E. Hinton and R. R. Salakhutdinov paper. Notes Aim to m

Jordan Burgess 13 Nov 17, 2022
BARTScore: Evaluating Generated Text as Text Generation

This is the Repo for the paper: BARTScore: Evaluating Generated Text as Text Generation Updates 2021.06.28 Release online evaluation Demo 2021.06.25 R

NeuLab 196 Dec 17, 2022
An implementation of IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG Classification

IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG Classification The repostiory consists of the code, results and data set links for

12 Dec 26, 2022
SSL_SLAM2: Lightweight 3-D Localization and Mapping for Solid-State LiDAR (mapping and localization separated) ICRA 2021

SSL_SLAM2 Lightweight 3-D Localization and Mapping for Solid-State LiDAR (Intel Realsense L515 as an example) This repo is an extension work of SSL_SL

Wang Han 王晗 1.3k Jan 08, 2023
We envision models that are pre-trained on a vast range of domain-relevant tasks to become key for molecule property prediction

We envision models that are pre-trained on a vast range of domain-relevant tasks to become key for molecule property prediction. This repository aims to give easy access to state-of-the-art pre-train

GMUM 90 Jan 08, 2023
Metrics to evaluate quality and efficacy of synthetic datasets.

An Open Source Project from the Data to AI Lab, at MIT Metrics for Synthetic Data Generation Projects Website: https://sdv.dev Documentation: https://

The Synthetic Data Vault Project 129 Jan 03, 2023
A simple code to convert image format and channel as well as resizing and renaming multiple images.

Rename-Resize-and-convert-multiple-images A simple code to convert image format and channel as well as resizing and renaming multiple images. This cod

Happy N. Monday 3 Feb 15, 2022
O-CNN: Octree-based Convolutional Neural Networks for 3D Shape Analysis

O-CNN This repository contains the implementation of our papers related with O-CNN. The code is released under the MIT license. O-CNN: Octree-based Co

Microsoft 607 Dec 28, 2022
A Pytorch Implementation of ClariNet

ClariNet A Pytorch Implementation of ClariNet (Mel Spectrogram -- Waveform) Requirements PyTorch 0.4.1 & python 3.6 & Librosa Examples Step 1. Downlo

Sungwon Kim 286 Sep 15, 2022
The `rtdl` library + The official implementation of the paper

The `rtdl` library + The official implementation of the paper "Revisiting Deep Learning Models for Tabular Data"

Yandex Research 510 Dec 30, 2022
Implementation of our paper "DMT: Dynamic Mutual Training for Semi-Supervised Learning"

DMT: Dynamic Mutual Training for Semi-Supervised Learning This repository contains the code for our paper DMT: Dynamic Mutual Training for Semi-Superv

Zhengyang Feng 120 Dec 30, 2022
A collection of differentiable SVD methods and also the official implementation of the ICCV21 paper "Why Approximate Matrix Square Root Outperforms Accurate SVD in Global Covariance Pooling?"

Differentiable SVD Introduction This repository contains: The official Pytorch implementation of ICCV21 paper Why Approximate Matrix Square Root Outpe

YueSong 32 Dec 25, 2022
Code & Models for 3DETR - an End-to-end transformer model for 3D object detection

3DETR: An End-to-End Transformer Model for 3D Object Detection PyTorch implementation and models for 3DETR. 3DETR (3D DEtection TRansformer) is a simp

Facebook Research 487 Dec 31, 2022
This is an implementation of PIFuhd based on Pytorch

Open-PIFuhd This is a unofficial implementation of PIFuhd PIFuHD: Multi-Level Pixel-Aligned Implicit Function forHigh-Resolution 3D Human Digitization

Lingteng Qiu 235 Dec 19, 2022
LETR: Line Segment Detection Using Transformers without Edges

LETR: Line Segment Detection Using Transformers without Edges Introduction This repository contains the official code and pretrained models for Line S

mlpc-ucsd 157 Jan 06, 2023
Chinese named entity recognization with BiLSTM using Keras

Chinese named entity recognization (Bilstm with Keras) Project Structure ./ ├── README.md ├── data │   ├── README.md │   ├── data 数据集 │   │   ├─

1 Dec 17, 2021