EPViz is a tool to aid researchers in developing, validating, and reporting their predictive modeling outputs.

Overview

EPViz (EEG Prediction Visualizer)

EPViz is a tool to aid researchers in developing, validating, and reporting their predictive modeling outputs. A lightweight and standalone software package developed in Python, EPViz allows researchers to load a PyTorch deep learning model, apply it to the EEG, and overlay the output channel-wise or subject-level temporal predictions on top of the original time series. 

Installation:

Clone the repository git clone https://github.com/jcraley/epviz.git

Python >= 3.7 is required. Other packages can be installed by creating a virtual environment and using the provided requirements.txt file.

To create the virtual environment:

python3 -m venv eeg-gui-venv

Activate the environment (MacOS and Linux):

source eeg-gui-venv/bin/activate

Activate the environment (Windows):

.\eeg-gui-venv\Scripts\activate

Install required packages:

pip install numpy==1.21.2
pip install -r requirements.txt

Running the visualizer:

You can then run the visualizer from the main folder using
python visualization/plot.py

For more command line options, see the section below.

Find an issue? Let us know..

Documentation:

You can find documentation here.

Features:

EDF files:
Average reference and longitudinal bipolar montages with the typical channel naming conventions are supported. Other channels can be plotted but will not be considered part of the montage.

Loading predictions:
Predictions can be loaded as pytorch (.pt) files or using preprocessed data and a model (also saved as .pt files). In both cases, the output is expected to be of length (number of samples in the edf file / k) = c where k and c are integers. Channel-wise predictions will be plotted starting from the top of the screen.

Saving to .edf:
This will save the signals that are currently being plotted. If the signals are filtered and predictions are plotted, filtered signals will be saved and predictions will be saved as well.

Saving to .png:
This will save an image of the current graph along with any predictions that are plotted.

Command line options:

We have added command line options to streamline use:

python visualization/plot.py --show {0 | 1} --fn [EDF_FILE] --montage-file [TXT_FILE] 
--predictions-file [PT_FILE] --prediction-thresh [THRESH]
--filter {0 | 1} [LOW_PASS_FS] [HIGH_PASS_FS] [NOTCH_FS] [BAND_PASS_FS_1] [BAND_PASS_FS_2] 
--location [INT] --window-width {5 | 10 | 15 | 20 | 25 | 30} --export-png-file [PNG_FILE]
--plot-title [TITLE] --print-annotations {0 | 1} --line-thickness [THICKNESS] --font-size [FONT_SIZE]
--save-edf-fn [EDF_FILE] --anonymize-edf {0 | 1}

These options include:

  • Whether or not to show the visualizer
  • The .edf file to load
  • What montage to use
  • Predictions to load
  • Threshold to use for the predictions
  • Filter specifications
  • Where in time to load the graph
  • How many seconds to show in the window
  • Name of .png file to save the graph
    • The title of the saved graph
    • Whether to show annotations on the saved graph
    • Line thickness of the saved graph
    • Font size for the saved graph
  • Name of the .edf file to save
    • Whether or not to anonymize the file

Tests:

Unit tests are located in the tests directory. To run the tests:

./run_tests

All tests will be run via a Github Action when pull requests are created.

Style guide:

We are using Pylint to ensure quality code style in accordance with PEP 8 guidelines.

To run Pylint on the visualizer code:

./run_pylint

Test files:

Test files come from the CHB-MIT database 1, 2 and the TUH EEG Corpus 3. The license for the CHB-MIT data can be found here.

The test files used in this repo are chb01_03 (from CHB) and 00013145_s004_t004 (from TUH). They have been renamed for convenience.

Citations for CHB-MIT dataset:

  1. Ali Shoeb. Application of Machine Learning to Epileptic Seizure Onset Detection and Treatment. PhD Thesis, Massachusetts Institute of Technology, September 2009.
  2. Goldberger, A., Amaral, L., Glass, L., Hausdorff, J., Ivanov, P. C., Mark, R., ... & Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation [Online]. 101 (23), pp. e215–e220.
Owner
Jeff
Jeff
A simple project on Data Visualization for CSCI-40 course.

Simple-Data-Visualization A simple project on Data Visualization for CSCI-40 course - the instructions can be found here SAT results in New York in 20

Hugo Matousek 8 Oct 27, 2021
Define fortify and autoplot functions to allow ggplot2 to handle some popular R packages.

ggfortify This package offers fortify and autoplot functions to allow automatic ggplot2 to visualize statistical result of popular R packages. Check o

Sinhrks 504 Dec 23, 2022
A blender import/export system for Defold

defold-blender-export A Blender export system for the Defold game engine. Setup Notes There are no exhaustive documents for this tool yet. Its just no

David Lannan 27 Dec 30, 2022
view cool stats related to your discord account.

DiscoStats cool statistics generated using your discord data. How? DiscoStats is not a service that breaks the Discord Terms of Service or Community G

ibrahim hisham 5 Jun 02, 2022
A small collection of tools made by me, that you can use to visualize atomic orbitals in both 2D and 3D in different aspects.

Orbitals in Python A small collection of tools made by me, that you can use to visualize atomic orbitals in both 2D and 3D in different aspects, and o

Prakrisht Dahiya 1 Nov 25, 2021
Keir&'s Visualizing Data on Life Expectancy

Keir's Visualizing Data on Life Expectancy Below is information on life expectancy in the United States from 1900-2017. You will also find information

9 Jun 06, 2022
Sentiment Analysis application created with Python and Dash, hosted at socialsentiment.net

Social Sentiment Dash Application Live-streaming sentiment analysis application created with Python and Dash, hosted at SocialSentiment.net. Dash Tuto

Harrison 456 Dec 25, 2022
A filler visualizer built using python

filler-visualizer 42 filler のログをビジュアライズしてスポーツさながら楽しむことができます! Usage (標準入力でvisualizer.pyに渡せばALL OK) 1. 既にあるログをビジュアライズする $ ./filler_vm -t 3 -p1 john_fill

Takumi Hara 1 Nov 04, 2021
Python library that makes it easy for data scientists to create charts.

Chartify Chartify is a Python library that makes it easy for data scientists to create charts. Why use Chartify? Consistent input data format: Spend l

Spotify 3.2k Jan 04, 2023
The Metabolomics Integrator (MINT) is a post-processing tool for liquid chromatography-mass spectrometry (LCMS) based metabolomics.

MINT (Metabolomics Integrator) The Metabolomics Integrator (MINT) is a post-processing tool for liquid chromatography-mass spectrometry (LCMS) based m

Sören Wacker 0 May 04, 2022
A python-generated website for visualizing the novel coronavirus (COVID-19) data for Greece.

COVID-19-Greece A python-generated website for visualizing the novel coronavirus (COVID-19) data for Greece. Data sources Data provided by Johns Hopki

Isabelle Viktoria Maciohsek 23 Jan 03, 2023
Visualize and compare datasets, target values and associations, with one line of code.

In-depth EDA (target analysis, comparison, feature analysis, correlation) in two lines of code! Sweetviz is an open-source Python library that generat

Francois Bertrand 2.3k Jan 05, 2023
Numerical methods for ordinary differential equations: Euler, Improved Euler, Runge-Kutta.

Numerical methods Numerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary

Aleksey Korshuk 5 Apr 29, 2022
A Python package for caclulations and visualizations in geological sciences.

geo_calcs A Python package for caclulations and visualizations in geological sciences. Free software: MIT license Documentation: https://geo-calcs.rea

Drew Heasman 1 Jul 12, 2022
Jupyter notebook and datasets from the pandas Q&A video series

Python pandas Q&A video series Read about the series, and view all of the videos on one page: Easier data analysis in Python with pandas. Jupyter Note

Kevin Markham 2k Jan 05, 2023
Info for The Great DataTas plot-a-thon

The Great DataTas plot-a-thon Datatas is organising a Data Visualisation competition: The Great DataTas plot-a-thon We will be using Tidy Tuesday data

2 Nov 21, 2021
An intuitive library to add plotting functionality to scikit-learn objects.

Welcome to Scikit-plot Single line functions for detailed visualizations The quickest and easiest way to go from analysis... ...to this. Scikit-plot i

Reiichiro Nakano 2.3k Dec 31, 2022
A guide for using Bootstrap 5 classes in Dash Bootstrap Components V1

dash-bootstrap-cheatsheet This handy interactive cheatsheet makes it easy to use the Bootstrap 5 classes with your Dash app made with the latest versi

10 Dec 22, 2022
Visualizations for machine learning datasets

Introduction The facets project contains two visualizations for understanding and analyzing machine learning datasets: Facets Overview and Facets Dive

PAIR code 7.1k Jan 07, 2023
Project coded in Python using Pandas to look at changes in chase% for batters facing a pitcher first time through the order vs. thrid time

Project coded in Python using Pandas to look at changes in chase% for batters facing a pitcher first time through the order vs. thrid time

Jason Kraynak 1 Jan 07, 2022