A repo to show how to use custom dataset to train s2anet, and change backbone to resnext101

Overview

<<<<<<< HEAD

S2ANet-custom-dataset

A repo to show how to use custom dataset to train s2anet, and change backbone to resnext101

Align Deep Features for Oriented Object Detection

Align Deep Features for Oriented Object Detection,
Jiaming Han*, Jian Ding*, Jie Li, Gui-Song Xia,
arXiv preprint (arXiv:2008.09397) / TGRS (IEEE Xplore).

The repo is based on mmdetection, S2ANet branch pytorch1.9, and UCAS-AOD-benchmark thanks to their work.

Two versions are provided here: Original version and v20210104. We recommend to use v20210104 (i.e. the master branch).

Introduction

As there is a need for me to run S2ANet on UCAS_AOD. However, there is no present work to do this. This repo is both a tutorial and an extension to original project S2ANet. Besides, I used UCAS-AOD-benchmark to prepare for dataset.

The main problems this repo solved are:

  • custom dataset training(UCAS_AOD as an example)
  • change the backbone to ResNeXt101x64_4d to gain more performance.(this pretrain model is provided in the link below, after downloading, move it to torch pretrain cache dir)
  • a tutorial for begineers in remote-sensing
  • provide some pretrained models with baidu Netdisk
  • align the accuracy provided in UCAS-AOD-benchmark (The Reason might be training params for I only have RTX3060 12G)

Results for UCAS_AOD

class ap
car 80.75557185
airplane 90.64514424
pretrained model file can be downloaded here. code: 0lsj

Tutorial for custom training

files to be added :

  • DOTA_devkit/ucas_aod_evaluation.py
  • mmdet/datasets/UCAS_AOD.py
  • tools/test.py
  • configs/ucasaod/*

The first one is used when evaluating.
The second one is for loading custom dataset(like this directory in UCAS_AOD_Benchmark).
The third is adding params for evaluating.
The fourth is config file for training.

Something Important to be noticed

  • 1.the processed dataset anno filed(.txt) have 14 cols, and they are $class,x_1,y_1,x_2,y_2,x_3,y_3,x_4,y_4,theta,x,y, width,height$. And theta is angle not arc(see here).

Citation

@article{han2021align,  
  author={J. {Han} and J. {Ding} and J. {Li} and G. -S. {Xia}},  
  journal={IEEE Transactions on Geoscience and Remote Sensing},   
  title={Align Deep Features for Oriented Object Detection},   
  year={2021}, 
  pages={1-11},  
  doi={10.1109/TGRS.2021.3062048}}

@inproceedings{xia2018dota,
  title={DOTA: A large-scale dataset for object detection in aerial images},
  author={Xia, Gui-Song and Bai, Xiang and Ding, Jian and Zhu, Zhen and Belongie, Serge and Luo, Jiebo and Datcu, Mihai and Pelillo, Marcello and Zhang, Liangpei},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  pages={3974--3983},
  year={2018}
}

@InProceedings{Ding_2019_CVPR,
  author = {Ding, Jian and Xue, Nan and Long, Yang and Xia, Gui-Song and Lu, Qikai},
  title = {Learning RoI Transformer for Oriented Object Detection in Aerial Images},
  booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  month = {June},
  year = {2019}
}

@article{chen2019mmdetection,
  title={MMDetection: Open mmlab detection toolbox and benchmark},
  author={Chen, Kai and Wang, Jiaqi and Pang, Jiangmiao and Cao, Yuhang and Xiong, Yu and Li, Xiaoxiao and Sun, Shuyang and Feng, Wansen and Liu, Ziwei and Xu, Jiarui and others},
  journal={arXiv preprint arXiv:1906.07155},
  year={2019}
}

pytorch1.9

Owner
jedibobo
jedibobo
Project dự đoán giá cổ phiếu bằng thuật toán LSTM gồm: code train và code demo

Web predicts stock prices using Long - Short Term Memory algorithm Give me some start please!!! User interface image: Choose: DayBegin, DayEnd, Stock

Vo Thuong Truong Nhon 8 Nov 11, 2022
End-To-End Memory Network using Tensorflow

MemN2N Implementation of End-To-End Memory Networks with sklearn-like interface using Tensorflow. Tasks are from the bAbl dataset. Get Started git clo

Dominique Luna 339 Oct 27, 2022
MGFN: Multi-Graph Fusion Networks for Urban Region Embedding was accepted by IJCAI-2022.

Multi-Graph Fusion Networks for Urban Region Embedding (IJCAI-22) This is the implementation of Multi-Graph Fusion Networks for Urban Region Embedding

202 Nov 18, 2022
Train SN-GAN with AdaBelief

SNGAN-AdaBelief Train a state-of-the-art spectral normalization GAN with AdaBelief https://github.com/juntang-zhuang/Adabelief-Optimizer Acknowledgeme

Juntang Zhuang 10 Jun 11, 2022
VQGAN+CLIP Colab Notebook with user-friendly interface.

VQGAN+CLIP and other image generation system VQGAN+CLIP Colab Notebook with user-friendly interface. Latest Notebook: Mse regulized zquantize Notebook

Justin John 227 Jan 05, 2023
Enhancing Knowledge Tracing via Adversarial Training

Enhancing Knowledge Tracing via Adversarial Training This repository contains source code for the paper "Enhancing Knowledge Tracing via Adversarial T

Xiaopeng Guo 14 Oct 24, 2022
A toolkit for document-level event extraction, containing some SOTA model implementations

❤️ A Toolkit for Document-level Event Extraction with & without Triggers Hi, there 👋 . Thanks for your stay in this repo. This project aims at buildi

Tong Zhu(朱桐) 159 Dec 22, 2022
Hypersearch weight debugging and losses tutorial

tutorial Activate tensorboard option Running TensorBoard remotely When working on a remote server, you can use SSH tunneling to forward the port of th

1 Dec 11, 2021
vit for few-shot classification

Few-Shot ViT Requirements PyTorch (= 1.9) TorchVision timm (latest) einops tqdm numpy scikit-learn scipy argparse tensorboardx Pretrained Checkpoints

Martin Dong 26 Nov 30, 2022
A pytorch-based deep learning framework for multi-modal 2D/3D medical image segmentation

A 3D multi-modal medical image segmentation library in PyTorch We strongly believe in open and reproducible deep learning research. Our goal is to imp

Adaloglou Nikolas 1.2k Dec 27, 2022
Research code for the paper "Variational Gibbs inference for statistical estimation from incomplete data".

Variational Gibbs inference (VGI) This repository contains the research code for Simkus, V., Rhodes, B., Gutmann, M. U., 2021. Variational Gibbs infer

Vaidotas Šimkus 1 Apr 08, 2022
Freecodecamp Scientific Computing with Python Certification; Solution for Challenge 2: Time Calculator

Assignment Write a function named add_time that takes in two required parameters and one optional parameter: a start time in the 12-hour clock format

Hellen Namulinda 0 Feb 26, 2022
PCGNN - Procedural Content Generation with NEAT and Novelty

PCGNN - Procedural Content Generation with NEAT and Novelty Generation Approach — Metrics — Paper — Poster — Examples PCGNN - Procedural Content Gener

Michael Beukman 8 Dec 10, 2022
A pre-trained language model for social media text in Spanish

RoBERTuito A pre-trained language model for social media text in Spanish READ THE FULL PAPER Github Repository RoBERTuito is a pre-trained language mo

25 Dec 29, 2022
Official pytorch implementation of Rainbow Memory (CVPR 2021)

Rainbow Memory: Continual Learning with a Memory of Diverse Samples

Clova AI Research 91 Dec 17, 2022
[CVPR'21] Multi-Modal Fusion Transformer for End-to-End Autonomous Driving

TransFuser This repository contains the code for the CVPR 2021 paper Multi-Modal Fusion Transformer for End-to-End Autonomous Driving. If you find our

695 Jan 05, 2023
MagFace: A Universal Representation for Face Recognition and Quality Assessment

MagFace MagFace: A Universal Representation for Face Recognition and Quality Assessment in IEEE Conference on Computer Vision and Pattern Recognition

Qiang Meng 523 Jan 05, 2023
Highly comparative time-series analysis

〰️ hctsa 〰️ : highly comparative time-series analysis hctsa is a software package for running highly comparative time-series analysis using Matlab (fu

Ben Fulcher 569 Dec 21, 2022
UnpNet - Rethinking 3-D LiDAR Point Cloud Segmentation(IEEE TNNLS)

UnpNet Citation Please cite the following paper if you use this repository in your reseach. @article {PMID:34914599, Title = {Rethinking 3-D LiDAR Po

Shijie Li 4 Jul 15, 2022
Implementation of paper "Graph Condensation for Graph Neural Networks"

GCond A PyTorch implementation of paper "Graph Condensation for Graph Neural Networks" Code will be released soon. Stay tuned :) Abstract We propose a

Wei Jin 66 Dec 04, 2022