Utilize Korean BERT model in sentence-transformers library

Overview

ko-sentence-transformers

이 프로젝트는 KoBERT 모델을 sentence-transformers 에서 보다 쉽게 사용하기 위해 만들어졌습니다. Ko-Sentence-BERT-SKTBERT 프로젝트에서는 KoBERT 모델을 sentence-transformers 에서 활용할 수 있도록 하였습니다. 하지만 설치 과정에 약간의 번거로움이 있었고, 라이브러리 코드를 직접 수정하기 때문에 허깅페이스 허브를 활용하기 어려웠습니다. ko-sentence-transformers 는 간단한 설치만으로 한국어 사전학습 모델을 문장 임베딩에 활용할 수 있도록 합니다.

Installation

pip install 을 통해 설치할 수 있습니다.

pip install ko-sentence-transformers

Examples

사전학습된 KoBERT 모델을 가져와 sentence-transformers API 에서 활용할 수 있습니다. training_nli_v2.py, training_sts.py 파일에서 모델 파인튜닝 예시를 확인할 수 있습니다.

from sentence_transformers import SentenceTransformer, models
from ko_sentence_transformers.models import KoBertTransformer
word_embedding_model = KoBertTransformer("monologg/kobert", max_seq_length=75)
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(), pooling_mode='mean')
model = SentenceTransformer(modules=[word_embedding_model, pooling_model])

허깅페이스 허브에 업로드된 모델 역시 간단히 불러와 활용할 수 있습니다.

from sentence_transformers import SentenceTransformer, util
import numpy as np

embedder = SentenceTransformer("jhgan/ko-sbert-sts")

# Corpus with example sentences
corpus = ['한 남자가 음식을 먹는다.',
          '한 남자가 빵 한 조각을 먹는다.',
          '그 여자가 아이를 돌본다.',
          '한 남자가 말을 탄다.',
          '한 여자가 바이올린을 연주한다.',
          '두 남자가 수레를 숲 속으로 밀었다.',
          '한 남자가 담으로 싸인 땅에서 백마를 타고 있다.',
          '원숭이 한 마리가 드럼을 연주한다.',
          '치타 한 마리가 먹이 뒤에서 달리고 있다.']

corpus_embeddings = embedder.encode(corpus, convert_to_tensor=True)

# Query sentences:
queries = ['한 남자가 파스타를 먹는다.',
           '고릴라 의상을 입은 누군가가 드럼을 연주하고 있다.',
           '치타가 들판을 가로 질러 먹이를 쫓는다.']

# Find the closest 5 sentences of the corpus for each query sentence based on cosine similarity
top_k = 5
for query in queries:
    query_embedding = embedder.encode(query, convert_to_tensor=True)
    cos_scores = util.pytorch_cos_sim(query_embedding, corpus_embeddings)[0]
    cos_scores = cos_scores.cpu()

    #We use np.argpartition, to only partially sort the top_k results
    top_results = np.argpartition(-cos_scores, range(top_k))[0:top_k]

    print("\n\n======================\n\n")
    print("Query:", query)
    print("\nTop 5 most similar sentences in corpus:")

    for idx in top_results[0:top_k]:
        print(corpus[idx].strip(), "(Score: %.4f)" % (cos_scores[idx]))
======================


Query: 한 남자가 파스타를 먹는다.

Top 5 most similar sentences in corpus:
한 남자가 음식을 먹는다. (Score: 0.7417)
한 남자가 빵 한 조각을 먹는다. (Score: 0.6684)
한 남자가 말을 탄다. (Score: 0.1089)
한 남자가 담으로 싸인 땅에서 백마를 타고 있다. (Score: 0.0717)
두 남자가 수레를 숲 속으로 밀었다. (Score: 0.0244)


======================


Query: 고릴라 의상을 입은 누군가가 드럼을 연주하고 있다.

Top 5 most similar sentences in corpus:
원숭이 한 마리가 드럼을 연주한다. (Score: 0.7057)
한 여자가 바이올린을 연주한다. (Score: 0.3154)
치타 한 마리가 먹이 뒤에서 달리고 있다. (Score: 0.2171)
두 남자가 수레를 숲 속으로 밀었다. (Score: 0.1294)
그 여자가 아이를 돌본다. (Score: 0.0979)


======================


Query: 치타가 들판을 가로 질러 먹이를 쫓는다.

Top 5 most similar sentences in corpus:
치타 한 마리가 먹이 뒤에서 달리고 있다. (Score: 0.7986)
두 남자가 수레를 숲 속으로 밀었다. (Score: 0.3255)
한 남자가 담으로 싸인 땅에서 백마를 타고 있다. (Score: 0.2688)
한 남자가 말을 탄다. (Score: 0.1530)
원숭이 한 마리가 드럼을 연주한다. (Score: 0.0913)

KorSTS Benchmarks

카카오브레인의 KorNLU 데이터셋을 활용하여 sentence-BERT 모델을 학습시킨 후 다국어 모델의 성능과 비교한 결과입니다. ko-sbert-nli 모델은 KorNLI 데이터셋을 활용하여 학습되었고, ko-sbert-sts 모델은 KorSTS 데이터셋을 활용하여 학습되었습니다. ko-sbert-multitask 모델은 두 데이터셋을 모두 활용하여 멀티태스크로 학습되었습니다. 학습 및 성능 평가 과정은 training_*.py, benchmark.py 에서 확인할 수 있습니다. 학습된 모델은 허깅페이스 모델 허브에 공개되어있습니다.

모델 Cosine Pearson Cosine Spearman Manhattan Pearson Manhattan Spearman Euclidean Pearson Euclidean Spearman Dot Pearson Dot Spearman
ko-sbert-multitask 83.78 84.02 81.61 81.72 81.68 81.81 79.16 78.69
ko-sbert-nli 82.03 82.36 80.08 79.91 80.06 79.85 75.76 74.72
ko-sbert-sts 80.79 79.91 78.08 77.35 78.03 77.31 75.96 75.20
paraphrase-multilingual-mpnet-base-v2 80.69 82.00 80.33 80.39 80.48 80.61 70.30 68.48
distiluse-base-multilingual-cased-v1 75.50 74.83 73.05 73.15 73.67 73.86 74.79 73.95
distiluse-base-multilingual-cased-v2 75.62 74.83 73.03 72.87 73.68 73.62 63.80 62.35
paraphrase-multilingual-MiniLM-L12-v2 73.87 74.44 72.55 71.95 72.45 71.85 55.86 55.26

References

  • Ham, J., Choe, Y. J., Park, K., Choi, I., & Soh, H. (2020). Kornli and korsts: New benchmark datasets for korean natural language understanding. arXiv preprint arXiv:2004.03289
  • Reimers, Nils and Iryna Gurevych. “Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks.” ArXiv abs/1908.10084 (2019)
  • Ko-Sentence-BERT-SKTBERT
  • KoBERT
Owner
Junghyun
Junghyun
An IVR Chatbot which can exponentially reduce the burden of companies as well as can improve the consumer/end user experience.

IVR-Chatbot Achievements 🏆 Team Uhtred won the Maverick 2.0 Bot-a-thon 2021 organized by AbInbev India. ❓ Problem Statement As we all know that, lot

ARYAMAAN PANDEY 9 Dec 08, 2022
Large-scale Knowledge Graph Construction with Prompting

Large-scale Knowledge Graph Construction with Prompting across tasks (predictive and generative), and modalities (language, image, vision + language, etc.)

ZJUNLP 161 Dec 28, 2022
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained mo

Hugging Face 77.2k Jan 03, 2023
The source code of HeCo

HeCo This repo is for source code of KDD 2021 paper "Self-supervised Heterogeneous Graph Neural Network with Co-contrastive Learning". Paper Link: htt

Nian Liu 106 Dec 27, 2022
A paper list for aspect based sentiment analysis.

Aspect-Based-Sentiment-Analysis A paper list for aspect based sentiment analysis. Survey [IEEE-TAC-20]: Issues and Challenges of Aspect-based Sentimen

jiangqn 419 Dec 20, 2022
Text Classification in Turkish Texts with Bert

You can watch the details of the project on my youtube channel Project Interface Project Second Interface Goal= Correctly guessing the classification

42 Dec 31, 2022
2021 AI CUP Competition on Traditional Chinese Scene Text Recognition - Intermediate Contest

繁體中文場景文字辨識 程式碼說明 組別:這就是我 成員:蔣明憲 唐碩謙 黃玥菱 林冠霆 蕭靖騰 目錄 環境套件 安裝方式 資料夾布局 前處理-製作偵測訓練註解檔 前處理-製作分類訓練樣本 part.py : 從 json 裁切出分類訓練樣本 Class.py : 將切出來的樣本按照文字分類到各資料夾

HuanyueTW 3 Jan 14, 2022
Data preprocessing rosetta parser for python

datapreprocessing_rosetta_parser I've never done any NLP or text data processing before, so I wanted to use this hackathon as a learning opportunity,

ASReview hackathon for Follow the Money 2 Nov 28, 2021
👄 The most accurate natural language detection library for Python, suitable for long and short text alike

1. What does this library do? Its task is simple: It tells you which language some provided textual data is written in. This is very useful as a prepr

Peter M. Stahl 334 Dec 30, 2022
Sentello is python script that simulates the anti-evasion and anti-analysis techniques used by malware.

sentello Sentello is a python script that simulates the anti-evasion and anti-analysis techniques used by malware. For techniques that are difficult t

Malwation 62 Oct 02, 2022
DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism (SVS & TTS); AAAI 2022

DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism This repository is the official PyTorch implementation of our AAAI-2022 paper, in

Jinglin Liu 829 Jan 07, 2023
LewusBot - Twitch ChatBot built in python with twitchio library

LewusBot Twitch ChatBot built in python with twitchio library. Uses twitch/leagu

Lewus 25 Dec 04, 2022
Spam filtering made easy for you

spammy Author: Tasdik Rahman Latest version: 1.0.3 Contents 1 Overview 2 Features 3 Example 3.1 Accuracy of the classifier 4 Installation 4.1 Upgradin

Tasdik Rahman 137 Dec 18, 2022
SIGIR'22 paper: Axiomatically Regularized Pre-training for Ad hoc Search

Introduction This codebase contains source-code of the Python-based implementation (ARES) of our SIGIR 2022 paper. Chen, Jia, et al. "Axiomatically Re

Jia Chen 17 Nov 09, 2022
Open-Source Toolkit for End-to-End Speech Recognition leveraging PyTorch-Lightning and Hydra.

OpenSpeech provides reference implementations of various ASR modeling papers and three languages recipe to perform tasks on automatic speech recogniti

Soohwan Kim 26 Dec 14, 2022
Machine learning classifiers to predict American Sign Language .

ASL-Classifiers American Sign Language (ASL) is a natural language that serves as the predominant sign language of Deaf communities in the United Stat

Tarek idrees 0 Feb 08, 2022
Legal text retrieval for python

legal-text-retrieval Overview This system contains 2 steps: generate training data containing negative sample found by mixture score of cosine(tfidf)

Nguyễn Minh Phương 22 Dec 06, 2022
RoNER is a Named Entity Recognition model based on a pre-trained BERT transformer model trained on RONECv2

RoNER RoNER is a Named Entity Recognition model based on a pre-trained BERT transformer model trained on RONECv2. It is meant to be an easy to use, hi

Stefan Dumitrescu 9 Nov 07, 2022
FewCLUE: 为中文NLP定制的小样本学习测评基准

FewCLUE: 为中文NLP定制的小样本学习测评基准

CLUE benchmark 387 Jan 04, 2023
AIDynamicTextReader - A simple dynamic text reader based on Artificial intelligence

AI Dynamic Text Reader: This is a simple dynamic text reader based on Artificial

Md. Rakibul Islam 1 Jan 18, 2022