CondenseNet V2: Sparse Feature Reactivation for Deep Networks

Overview

CondenseNetV2

This repository is the official Pytorch implementation for "CondenseNet V2: Sparse Feature Reactivation for Deep Networks" paper by Le Yang*, Haojun Jiang*, Ruojin Cai, Yulin Wang, Shiji Song, Gao Huang and Qi Tian (* Authors contributed equally).

Contents

  1. Introduction
  2. Usage
  3. Results
  4. Contacts

Introduction

Reusing features in deep networks through dense connectivity is an effective way to achieve high computational efficiency. The recent proposed CondenseNet has shown that this mechanism can be further improved if redundant features are removed. In this paper, we propose an alternative approach named sparse feature reactivation (SFR), aiming at actively increasing the utility of features for reusing. In the proposed network, named CondenseNetV2, each layer can simultaneously learn to 1) selectively reuse a set of most important features from preceding layers; and 2) actively update a set of preceding features to increase their utility for later layers. Our experiments show that the proposed models achieve promising performance on image classification (ImageNet and CIFAR) and object detection (MS COCO) in terms of both theoretical efficiency and practical speed.

Usage

Dependencies

Training

As an example, use the following command to train a CondenseNetV2-A/B/C on ImageNet

python -m torch.distributed.launch --nproc_per_node=8 train.py --model cdnv2_a/b/c 
  --batch-size 1024 --lr 0.4 --warmup-lr 0.1 --warmup-epochs 5 --opt sgd --sched cosine \
  --epochs 350 --weight-decay 4e-5 --aa rand-m9-mstd0.5 --remode pixel --reprob 0.2 \
  --data_url /PATH/TO/IMAGENET --train_url /PATH/TO/LOG_DIR

Evaluation

We take the ImageNet model trained above as an example.

To evaluate the non-converted trained model, use test.py to evaluate from a given checkpoint path:

python test.py --model cdnv2_a/b/c \
  --data_url /PATH/TO/IMAGENET -b 32 -j 8 \
  --train_url /PATH/TO/LOG_DIR \
  --evaluate_from /PATH/TO/MODEL_WEIGHT

To evaluate the converted trained model, use --model converted_cdnv2_a/b/c:

python test.py --model converted_cdnv2_a/b/c \
  --data_url /PATH/TO/IMAGENET -b 32 -j 8 \
  --train_url /PATH/TO/LOG_DIR \
  --evaluate_from /PATH/TO/MODEL_WEIGHT

Note that these models are still the large models after training. To convert the model to standard group-convolution version as described in the paper, use the convert_and_eval.py:

python convert_and_eval.py --model cdnv2_a/b/c \
  --data_url /PATH/TO/IMAGENET -b 64 -j 8 \
  --train_url /PATH/TO/LOG_DIR \
  --convert_from /PATH/TO/MODEL_WEIGHT

Results

Results on ImageNet

Model FLOPs Params Top-1 Error Tsinghua Cloud Google Drive
CondenseNetV2-A 46M 2.0M 35.6 Download Download
CondenseNetV2-B 146M 3.6M 28.1 Download Download
CondenseNetV2-C 309M 6.1M 24.1 Download Download

Results on COCO2017 Detection

Detection Framework Backbone Backbone FLOPs mAP
FasterRCNN ShuffleNetV2 0.5x 41M 22.1
FasterRCNN CondenseNetV2-A 46M 23.5
FasterRCNN ShuffleNetV2 1.0x 146M 27.4
FasterRCNN CondenseNetV2-B 146M 27.9
FasterRCNN MobileNet 1.0x 300M 30.6
FasterRCNN ShuffleNetV2 1.5x 299M 30.2
FasterRCNN CondenseNetV2-C 309M 31.4
RetinaNet MobileNet 1.0x 300M 29.7
RetinaNet ShuffleNetV2 1.5x 299M 29.1
RetinaNet CondenseNetV2-C 309M 31.7

Results on CIFAR

Model FLOPs Params CIFAR-10 CIFAR-100
CondenseNet-50 28.6M 0.22M 6.22 -
CondenseNet-74 51.9M 0.41M 5.28 -
CondenseNet-86 65.8M 0.52M 5.06 23.64
CondenseNet-98 81.3M 0.65M 4.83 -
CondenseNet-110 98.2M 0.79M 4.63 -
CondenseNet-122 116.7M 0.95M 4.48 -
CondenseNetV2-110 41M 0.48M 4.65 23.94
CondenseNetV2-146 62M 0.78M 4.35 22.52

Contacts

[email protected] [email protected]

Any discussions or concerns are welcomed!

Citation

If you find our project useful in your research, please consider citing:

@inproceedings{yang2021condensenetv2,
  title={CondenseNet V2: Sparse Feature Reactivation for Deep Networks},
  author={Yang, Le and Jiang, Haojun and Cai, Ruojin and Wang, Yulin and Song, Shiji and Huang, Gao and Tian, Qi},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  pages={4321--4330},
  year={2021}
}
Owner
Haojun Jiang
Now a first year PhD in the Department of Automation. My research interest lies in Computer Vision .
Haojun Jiang
Repo for our ICML21 paper Unsupervised Learning of Visual 3D Keypoints for Control

Unsupervised Learning of Visual 3D Keypoints for Control [Project Website] [Paper] Boyuan Chen1, Pieter Abbeel1, Deepak Pathak2 1UC Berkeley 2Carnegie

Boyuan Chen 34 Jul 22, 2022
Illuminated3D This project participates in the Nasa Space Apps Challenge 2021.

Illuminated3D This project participates in the Nasa Space Apps Challenge 2021.

Eleftheriadis Emmanouil 1 Oct 09, 2021
CLIP+FFT text-to-image

Aphantasia This is a text-to-image tool, part of the artwork of the same name. Based on CLIP model, with FFT parameterizer from Lucent library as a ge

vadim epstein 690 Jan 02, 2023
Automatic Attendance marker for LMS Practice School Division, BITS Pilani

LMS Attendance Marker Automatic script for lazy people to mark attendance on LMS for Practice School 1. Setup Add your LMS credentials and time slot t

Nihar Bansal 3 Jun 12, 2021
Semantic similarity computation with different state-of-the-art metrics

Semantic similarity computation with different state-of-the-art metrics Description • Installation • Usage • License Description TaxoSS is a semantic

6 Jun 22, 2022
TyXe: Pyro-based BNNs for Pytorch users

TyXe: Pyro-based BNNs for Pytorch users TyXe aims to simplify the process of turning Pytorch neural networks into Bayesian neural networks by leveragi

87 Jan 03, 2023
TensorFlow Implementation of "Show, Attend and Tell"

Show, Attend and Tell Update (December 2, 2016) TensorFlow implementation of Show, Attend and Tell: Neural Image Caption Generation with Visual Attent

Yunjey Choi 902 Nov 29, 2022
Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)

Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)

Packt 1.5k Jan 03, 2023
TensorLight - A high-level framework for TensorFlow

TensorLight is a high-level framework for TensorFlow-based machine intelligence applications. It reduces boilerplate code and enables advanced feature

Benjamin Kan 10 Jul 31, 2022
Vision Transformer for 3D medical image registration (Pytorch).

ViT-V-Net: Vision Transformer for Volumetric Medical Image Registration keywords: vision transformer, convolutional neural networks, image registratio

Junyu Chen 192 Dec 20, 2022
CVPR 2022 "Online Convolutional Re-parameterization"

OREPA: Online Convolutional Re-parameterization This repo is the PyTorch implementation of our paper to appear in CVPR2022 on "Online Convolutional Re

Mu Hu 121 Dec 21, 2022
Supercharging Imbalanced Data Learning WithCausal Representation Transfer

ECRT: Energy-based Causal Representation Transfer Code for Supercharging Imbalanced Data Learning With Energy-basedContrastive Representation Transfer

Zidi Xiu 11 May 02, 2022
Estimation of human density in a closed space using deep learning.

Siemens HOLLZOF challenge - Human Density Estimation Add project description here. Installing Dependencies: Install Python3 either system-wide, user-w

3 Aug 08, 2021
Neural style in TensorFlow! 🎨

neural-style An implementation of neural style in TensorFlow. This implementation is a lot simpler than a lot of the other ones out there, thanks to T

Anish Athalye 5.5k Dec 29, 2022
A state of the art of new lightweight YOLO model implemented by TensorFlow 2.

CSL-YOLO: A New Lightweight Object Detection System for Edge Computing This project provides a SOTA level lightweight YOLO called "Cross-Stage Lightwe

Miles Zhang 54 Dec 21, 2022
Deep Reinforcement Learning for Keras.

Deep Reinforcement Learning for Keras What is it? keras-rl implements some state-of-the art deep reinforcement learning algorithms in Python and seaml

Keras-RL 0 Dec 15, 2022
EdMIPS: Rethinking Differentiable Search for Mixed-Precision Neural Networks

EdMIPS is an efficient algorithm to search the optimal mixed-precision neural network directly without proxy task on ImageNet given computation budgets. It can be applied to many popular network arch

Zhaowei Cai 47 Dec 30, 2022
Captcha-tensorflow - Image Captcha Solving Using TensorFlow and CNN Model. Accuracy 90%+

Captcha Solving Using TensorFlow Introduction Solve captcha using TensorFlow. Learn CNN and TensorFlow by a practical project. Follow the steps, run t

Jackon Yang 869 Jan 06, 2023
PyTorch 1.0 inference in C++ on Windows10 platforms

Serving PyTorch Models in C++ on Windows10 platforms How to use Prepare Data examples/data/train/ - 0 - 1 . . . - n examples/data/test/

Henson 88 Oct 15, 2022
Source code for From Stars to Subgraphs

GNNAsKernel Official code for From Stars to Subgraphs: Uplifting Any GNN with Local Structure Awareness Visualizations GNN-AK(+) GNN-AK(+) with Subgra

44 Dec 19, 2022