Xeasy-ml is a packaged machine learning framework.

Overview

xeasy-ml

1. What is xeasy-ml

Xeasy-ml is a packaged machine learning framework. It allows a beginner to quickly build a machine learning model and use the model to process and analyze his own data. At the same time, we have also realized the automatic analysis of data. During data processing, xeasy-ml will automatically draw data box plots, distribution histograms, etc., and perform feature correlation analysis to help users quickly discover the value of data.

2.Installation

Dependencies

xeasy-ml requires:

Scikit-learn >= 0.24.1

Pandas >= 0.24.2

Numppy >= 1.19.5

Matplotlib >= 3.3.4

Pydotplus >= 2.0.2

Xgboost >= 1.4.2

User installation

pip install xeasy-ml

3. Quick Start

1.Create a new project

Create a new python file named pro_init.py to initialize the project.

from xeasy_ml.project_init.create_new_demo import create_project
import os

pro_path = os.getcwd()
create_project(pro_path)

Now you can see the following file structure in your project.

├── Your_project
     ...
│   ├── pro_init.py
│   ├── project
│   │   └── your_project

2.Run example

cd project/your_project

python __main__.py

3.View Results

cd project/your_project_name/result/v1
ls -l
├── box   (Box plot)
├── cross_predict.txt (Cross-validation prediction file)
├── cross.txt  (Cross validation effect evaluation)
├── deleted_feature.txt  (Features that need to be deleted)
├── demo_feature_weight.txt  (Feature weights)
├── demo.m   (Model)
├── feature_with_feature  (Feature similarity)
├── feature_with_label   (Similarity between feature and label )
├── hist    (Distribution histogram)
├── model
├── predict_result.txt  (Test set prediction results)
└── test_score.txt      (Score on the test set)


xeasy-ml中文文档

1. 简介

​ xeasy-ml是一个封装的机器学习框架。它允许初学者快速建立机器学习模型,并使用该模型处理和分析自己的数据。同时,还实现了数据的自动分析。在数据处理过程中,xeasy-ml会自动绘制数据的箱线图、分布直方图等,并进行特征相关性分析,帮助用户快速发现数据的价值。

2.安装

依赖包:

Scikit-learn >= 0.24.1
Pandas >= 0.24.2
Numppy >= 1.19.5
Matplotlib >= 3.3.4
Pydotplus >= 2.0.2
Xgboost >= 1.4.2

​ 安装:

pip install xeasy-ml

3.如何使用

1.创建自己的项目

#创建一个名为pro_init.py的新python文件来初始化项目。
from xeasy_ml.project_init.create_new_demo import create_project
import os
pro_path = os.getcwd()
create_project(pro_path)
#在pro_init.py同级目录下可以看到以下目录结构:
├── Your_project
 	 ...
	├── pro_init.py
	├── project
	│  └── your_project

2.运行

cd project/your_project
python __main__.py

3.查看结果

cd project/your_project_name/result/v1
ls -l

  ├── box  (箱线图)

  ├── cross_predict.txt (交叉验证预测文件)

  ├── cross.txt (交叉验证评估)

  ├── deleted_feature.txt (需要被删除的特征)

  ├── demo_feature_weight.txt (模型特征权重)

  ├── demo.m  (保存的模型文件)

  ├── feature_with_feature (特征相似度)

  ├── feature_with_label  (特征与标签相似度)

  ├── hist  (分布直方图)

  ├── model

  ├── predict_result.txt (测试集预测结果)

  └── test_score.txt   (测试集评价指标得分)

4.线上使用手册

​ 假设你已经按照3.1的指引生成了你的个人项目文件夹,文件的目录结构为:

|———— Your_project
 	 ...
	| |———— pro_init.py
	| |———— project
	| |	└──your_project
	| |	   └──config
	| |	      └──demo
	| |		 └──ml.conf
	| |		 └──model.conf
	| |		 ...
	| |	      |——log.conf
	| |	   |——data
	| |	      └──sample.txt
	| |        |——log
	| |        |——result
	| |        |——__main__.py									

1.训练

​ 上述project结构中,config文件夹下为模型配置文件和日志配置文件;data为训练集;log是训练过程储存日志的文件夹,你可以在这里查看你的模型运行日志;result用于储存模型运行过程产生的数据分析资料,模型文件等;

​ 训练时,你可以根据自己的任务对配置文件进行调整,数据需存放在data文件夹下;模型训练和预测的结果在result内;加入你已经完成了模型的训练过程,你最需要关注的是result下的变化,其中最重要的是model文件下的demo.m,这是模型训练后的储存文件。

|——result
   |——v1
      |——box
      |——hist
      |——model

2.工程预测

​ 线上使用xeasy-ml时,你需要准备三个文件:demo.m , log.conf 和feature_enginnering.conf;在完成训练步骤后,你可以在project文件夹下找到它们;将这三个文件放在你的工程目录下,接着你需要做的就是写出你自己的predict.py(或者调用xeasy-ml.predict()方法,传入上述三个参数),这个文件包括xeasy-ml中的prediction_ml.PredictionML类用以初始化模型,PredictionML(config=conf, xeasy_log_path = xeasy_log_path)有两个参数:config是用于模型初始化的文件,easy_log_path是模型的日志配置文件;这里有个要注意的地方是我们可以根据自己的需要决定是否传入模型的配置文件(训练中的ml.conf)文件的作用是根据配置信息初始化模型(包括数据处理等),如果执行这一步操作,你需要在与启动文件相同目录下添加’./config/demo/model.conf‘和'’./config/demo/feature_enginnering.conf‘';需要注意的是ml.conf和model.conf的参数调整

self.ml = xml.prediction_ml.PredictionML(config = 'your ml.conf path', xeasy_log_path=xeasy_log_path)

如果只是使用XGBClassifier模型,不需要传入模型初始化文件,也不需要额外建立’./config/demo/model.conf‘文件目录;仅传入日志配置文件即可,但是需要自定义数据处理,代码形式如下:

self.ml = xml.prediction_ml.PredictionML(xeasy_log_path=xeasy_log_path)
self.ml._model = XGBClassifier()
self.ml._model.load_model(model_path)

self.ml._feature_processor = xml.data_processor.DataProcessor(conf=ml_config, log_path=xeasy_log_path)
self.ml._feature_processor.init()

以上步骤是线上模型的两种初始化方式;初始化后,对预测数据进行预测前需要进行数据处理,例:

self.ml._feature_processor.test_data = data_frame
self.ml._feature_processor.execute()
# 测试数据
test_feature = self.ml._feature_processor.test_data_feature.astype("float64", errors='ignore')
# 预测结果
predict_res = self.ml._model.predict(test_feature)
PySpark + Scikit-learn = Sparkit-learn

Sparkit-learn PySpark + Scikit-learn = Sparkit-learn GitHub: https://github.com/lensacom/sparkit-learn About Sparkit-learn aims to provide scikit-lear

Lensa 1.1k Jan 04, 2023
Warren - Stock Price Predictor

Web app to predict closing stock prices in real time using Facebook's Prophet time series algorithm with a multi-variate, single-step time series forecasting strategy.

Kumar Nityan Suman 153 Jan 03, 2023
A library to generate synthetic time series data by easy-to-use factors and generator

timeseries-generator This repository consists of a python packages that generates synthetic time series dataset in a generic way (under /timeseries_ge

Nike Inc. 87 Dec 20, 2022
Using Logistic Regression and classifiers of the dataset to produce an accurate recall, f-1 and precision score

Using Logistic Regression and classifiers of the dataset to produce an accurate recall, f-1 and precision score

Thines Kumar 1 Jan 31, 2022
LibTraffic is a unified, flexible and comprehensive traffic prediction library based on PyTorch

LibTraffic is a unified, flexible and comprehensive traffic prediction library, which provides researchers with a credibly experimental tool and a convenient development framework. Our library is imp

432 Jan 05, 2023
Confidence intervals for scikit-learn forest algorithms

forest-confidence-interval: Confidence intervals for Forest algorithms Forest algorithms are powerful ensemble methods for classification and regressi

272 Dec 01, 2022
30 Days Of Machine Learning Using Pytorch

Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch

Mayur 119 Nov 24, 2022
This repository contains the code to predict house price using Linear Regression Method

House-Price-Prediction-Using-Linear-Regression The dataset I used for this personal project is from Kaggle uploaded by aariyan panchal. Link of Datase

0 Jan 28, 2022
Simple Machine Learning Tool Kit

Getting started smltk (Simple Machine Learning Tool Kit) package is implemented for helping your work during data preparation testing your model The g

Alessandra Bilardi 1 Dec 30, 2021
Fourier-Bayesian estimation of stochastic volatility models

fourier-bayesian-sv-estimation Fourier-Bayesian estimation of stochastic volatility models Code used to run the numerical examples of "Bayesian Approa

15 Jun 20, 2022
Code Repository for Machine Learning with PyTorch and Scikit-Learn

Code Repository for Machine Learning with PyTorch and Scikit-Learn

Sebastian Raschka 1.4k Jan 03, 2023
Penguins species predictor app is used to classify penguins species created using python's scikit-learn, fastapi, numpy and joblib packages.

Penguins Classification App Penguins species predictor app is used to classify penguins species using their island, sex, bill length (mm), bill depth

Siva Prakash 3 Apr 05, 2022
Banpei is a Python package of the anomaly detection.

Banpei Banpei is a Python package of the anomaly detection. Anomaly detection is a technique used to identify unusual patterns that do not conform to

Hirofumi Tsuruta 282 Jan 03, 2023
ML Kaggle Titanic Problem using LogisticRegrission

-ML-Kaggle-Titanic-Problem-using-LogisticRegrission here you will find the solution for the titanic problem on kaggle with comments and step by step c

Mahmoud Nasser Abdulhamed 3 Oct 23, 2022
This repo includes some graph-based CTR prediction models and other representative baselines.

Graph-based CTR prediction This is a repository designed for graph-based CTR prediction methods, it includes our graph-based CTR prediction methods: F

Big Data and Multi-modal Computing Group, CRIPAC 47 Dec 30, 2022
Optimal Randomized Canonical Correlation Analysis

ORCCA Optimal Randomized Canonical Correlation Analysis This project is for the python version of ORCCA algorithm. It depends on Numpy for matrix calc

Yinsong Wang 1 Nov 21, 2021
Implementation of different ML Algorithms from scratch, written in Python 3.x

Implementation of different ML Algorithms from scratch, written in Python 3.x

Gautam J 393 Nov 29, 2022
slim-python is a package to learn customized scoring systems for decision-making problems.

slim-python is a package to learn customized scoring systems for decision-making problems. These are simple decision aids that let users make yes-no p

Berk Ustun 37 Nov 02, 2022