Implementation of SOMs (Self-Organizing Maps) with neighborhood-based map topologies.

Overview

py-self-organizing-maps

Simple implementation of self-organizing maps (SOMs)

A SOM is an unsupervised method for learning a mapping from a discrete neighborhood-based topology to a data space. This topology is implicitly given as a neighborhood graph. The SOM method assigns to each node of this graph a feature weight vector corresponding to a vector/position in the data space. Over the course of iterations, the node weights of this topology are learned to cover the distribution of samples in the dataset, providing a discrete map over the manifold of the data while encouraging local continuity through the topology. Through determining nearest neighbor node weights to a given data sample, the learned mapping is approximately invertible by basically performing quantization.

The code

This implementation is split into two major parts: An abstract Topology class and the SelfOrganizingMap class. The first one is basically an interface to define a neighborhood-based topology, hence it holds methods such as get_neighbors_of_node(...) or metric(...) or even abstract plotting methods such as plot_map(...). There is already one, arguably the simplest form of topology, implemented, namely regular one-, two- or three-dimensional grid structures as a GridTopology subclass.

The second class handles everything related to the iterative learning process and has an self.topology attribute which is an instance of the other class. It provides a simple fit() method for training and wrapper methods for plotting.

The plotting methods are currently somewhat specialised to the color space example scenario. Feel free to play around with other topologies and other visualisations.

How to use

from som import SelfOrganizingMap
from som import GridTopology

# create a random set of RGB color vectors
N = 1000
X = np.random.randint(0, 255, (N, 3)) # shape = (number_of_samples, feature_dim)

# create the SOM and fit it to the color vectors
topo = GridTopology(height=8, width=8, depth=8, d=2) # d is either 1 or 2 or 3
som = SelfOrganizingMap(topology=topo)
som.fit(X)

# plot the learned map, the nodes in the data space and the node differences
som.plot_map()
som.plot_nodes()
som.plot_differences_map()

Examples

TODOS

  • Initial commit
  • Add comments and documentation
  • Add hexagonal topology
  • Add other dataset examples (e.g. MNIST, face dataset, ...)
  • Use PyTorch for GPU
Owner
Jonas Grebe
Computer science master student @ TU Darmstadt
Jonas Grebe
Interactive chemical viewer for 2D structures of small molecules

👀 mols2grid mols2grid is an interactive chemical viewer for 2D structures of small molecules, based on RDKit. ➡️ Try the demo notebook on Google Cola

Cédric Bouysset 154 Dec 26, 2022
Blender addon that creates a temporary window of any type from the 3D View.

CreateTempWindow2.8 Blender addon that creates a temporary window of any type from the 3D View. Features Can the following window types: 3D View Graph

3 Nov 27, 2022
A python-generated website for visualizing the novel coronavirus (COVID-19) data for Greece.

COVID-19-Greece A python-generated website for visualizing the novel coronavirus (COVID-19) data for Greece. Data sources Data provided by Johns Hopki

Isabelle Viktoria Maciohsek 23 Jan 03, 2023
A high performance implementation of HDBSCAN clustering. http://hdbscan.readthedocs.io/en/latest/

HDBSCAN Now a part of scikit-learn-contrib HDBSCAN - Hierarchical Density-Based Spatial Clustering of Applications with Noise. Performs DBSCAN over va

Leland McInnes 91 Dec 29, 2022
matplotlib: plotting with Python

Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations in Python. Check out our home page for more inform

Matplotlib Developers 16.7k Jan 08, 2023
Python & Julia port of codes in excellent R books

X4DS This repo is a collection of Python & Julia port of codes in the following excellent R books: An Introduction to Statistical Learning (ISLR) Stat

Gitony 5 Jun 21, 2022
Generate graphs with NetworkX, natively visualize with D3.js and pywebview

webview_d3 This is some PoC code to render graphs created with NetworkX natively using D3.js and pywebview. The main benifit of this approac

byt3bl33d3r 68 Aug 18, 2022
An interactive dashboard for visualisation, integration and classification of data using Active Learning.

AstronomicAL An interactive dashboard for visualisation, integration and classification of data using Active Learning. AstronomicAL is a human-in-the-

45 Nov 28, 2022
The Metabolomics Integrator (MINT) is a post-processing tool for liquid chromatography-mass spectrometry (LCMS) based metabolomics.

MINT (Metabolomics Integrator) The Metabolomics Integrator (MINT) is a post-processing tool for liquid chromatography-mass spectrometry (LCMS) based m

Sören Wacker 0 May 04, 2022
Dimensionality reduction in very large datasets using Siamese Networks

ivis Implementation of the ivis algorithm as described in the paper Structure-preserving visualisation of high dimensional single-cell datasets. Ivis

beringresearch 284 Jan 01, 2023
Simple python implementation with matplotlib to manually fit MIST isochrones to Gaia DR2 color-magnitude diagrams

Simple python implementation with matplotlib to manually fit MIST isochrones to Gaia DR2 color-magnitude diagrams

Karl Jaehnig 7 Oct 22, 2022
BGraph is a tool designed to generate dependencies graphs from Android.bp soong files.

BGraph BGraph is a tool designed to generate dependencies graphs from Android.bp soong files. Overview BGraph (for Build-Graphs) is a project aimed at

Quarkslab 10 Dec 19, 2022
Generate SVG (dark/light) images visualizing (private/public) GitHub repo statistics for profile/website.

Generate daily updated visualizations of GitHub user and repository statistics from the GitHub API using GitHub Actions for any combination of private and public repositories, whether owned or contri

Adam Ross 2 Dec 16, 2022
Create a table with row explanations, column headers, using matplotlib

Create a table with row explanations, column headers, using matplotlib. Intended usage was a small table containing a custom heatmap.

4 Aug 14, 2022
Visualizing weather changes across the world using third party APIs and Python.

WEATHER FORECASTING ACROSS THE WORLD Overview Python scripts were created to visualize the weather for over 500 cities across the world at varying di

G Johnson 0 Jun 12, 2021
A way of looking at COVID-19 data that I haven't seen before.

Visualizing Omicron: COVID-19 Deaths vs. Cases Click here for other countries. Data is from Our World in Data/Johns Hopkins University. About this pro

1 Jan 10, 2022
NumPy and Pandas interface to Big Data

Blaze translates a subset of modified NumPy and Pandas-like syntax to databases and other computing systems. Blaze allows Python users a familiar inte

Blaze 3.1k Jan 01, 2023
Realtime Viewer Mandelbrot set with Python and Taichi (cpu, opengl, cuda, vulkan, metal)

Mandelbrot-set-Realtime-Viewer- Realtime Viewer Mandelbrot set with Python and Taichi (cpu, opengl, cuda, vulkan, metal) Control: "WASD" - movement, "

22 Oct 31, 2022
Colormaps for astronomers

cmastro: colormaps for astronomers 🔭 This package contains custom colormaps that have been used in various astronomical applications, similar to cmoc

Adrian Price-Whelan 12 Oct 11, 2022
Python library that makes it easy for data scientists to create charts.

Chartify Chartify is a Python library that makes it easy for data scientists to create charts. Why use Chartify? Consistent input data format: Spend l

Spotify 3.2k Jan 01, 2023