Python scripts for a generic performance testing infrastructure using Locust.

Related tags

TestingLocust_Scripts
Overview

TODOs

  • Reference to published paper or online version of it
  • loadtest_plotter.py: Cleanup and reading data from files
  • ARS_simulation.py: Cleanup, documentation and control workloads and parameters of the simulation model through CLI
  • locust-parameter-variation.py: Cleanup and Documentation
  • Move the files into subfolders (Executors, Load Testers, Evaluators, Systems under Test)

Locust Performance Testing Infrastructure

In [1] we introduced a generic performance testing infrastructure and used it in an industrial case study. Our idea is to have decoupled components, Python scripts in our case, that together allow to:

  1. reproducible execute a load testing tool with a set of parameters for a particular experiment,
  2. evaluate the performance measurements assisted by visualizations or automatic evaluators.

Generally, we have four types of components in our infrastructure:

  • Executors: execute a particular Load Tester as long as the Load Tester provides a CLI or an API;
  • Load Testers: execute the load test, parametrized with values given by an Executor. Have to output a logfile containing the response times;
  • Evaluators: postprocess the logfile and for example plot the response times;
  • Systems under Test (SUTs): Target systems we want to test. Usually, the target systems will be external systems, e.g., web servers. In our case, we build software that simulates the behavior of a real system, in order to provide the means for others to roughly reproduce our experiments.

More details about our generic performance testing infrastructure can be found in our paper [1].

This repository contains the aforementioned Python scripts:

  • Executors:
    • executor.py: executes Locust with a set of parameters;
    • locust-parameter-variation.py: executes Locust and keeps increasing the load. This is similar to Locust's Step Load Mode, however, our approach increases the number of clients for as long as the ARS complies with real-time requirements in order to find the saturation point of the ARS.
  • Load Testers:
    • locust_tester.py: contains specific code for Locust to perform the actual performance test. For demonstration purposes, this script tests ARS_simulation.py. Outputs a locust_log.log;
    • locust_multiple_requests: an enhanced version of locust_tester that sends additional requests to generate more load.
    • locust_teastore.py: performs load testing against TeaStore, or our simulated TeaStore.
  • Evaluators:
    • loadtest_plotter.py: reads the locust_log.log, plots response times, and additional metrics to better visualize, if the real-time requirements of the EN 50136 are met.
  • SUTs
    • Alarm Receiving Software Simulation (ARS_simulation.py): simulates an industrial ARS based on data measured in the production environment of the GS company group.
    • TeaStore (teastore_simulation.py): simulates TeaStore based on a predictive model generated in a lab environment.

Instructions to reproduce results in our paper

Quick start

  • Clone the repository;
  • run pip3 install -r requirements.txt;
  • In the file ARS_simulation.py make sure that the constant MASCOTS2020 is set to True.
  • open two terminal shells:
    1. run python3 ARS_simulation.py in one of them;
    2. run python3 executor.py. in the other.
  • to stop the test, terminate the executor.py script;
  • run python3 loadtest_plotter.py, pass the locust_log.log and see the results. :)

Details

Using the performance testing infrastructure available in this repository, we conducted performance tests in a real-world alarm system provided by the GS company. To provide a way to reproduce our results without the particular alarm system, we build a software simulating the Alarm Receiving Software. The simulation model uses variables, we identified as relevant and also performed some measurements in the production environment, to initialize the variables correctly.

To reproduce our results, follow the steps in the Section "Quick start". The scripts are already preconfigured, to simulate a realistic workload, inject faults, and automatically recover from them. The recovery is performed after the time, the real fault management mechanism requires.

If you follow the steps and, for example, let the test run for about an hour, you will get similar results to the ones you can find in the Folder "Tests under Fault".

Results after running our scripts for about an hour:

Results


Keep in mind that we use a simulated ARS here; in our paper we present measurements performed with a real system, thus the results reproduced with the code here are slightly different.

Nonetheless, the overall observations we made in our paper, are in fact reproducible.


Instructions on how to adapt our performance testing infrastructure to other uses

After cloning the repository, take a look at the locust_tester.py. This is, basically, an ordinary Locust script that sends request to the target system and measures the response time, when the response arrives. Our locust_tester.py is special, because:

  • we implemented a custom client instead of using the default;
  • we additionally log the response times to a logfile instead of using the .csv files Locust provides.

So, write a performance test using Locust, following the instructions of the Locust developers on how to write a Locust script. The only thing to keep in mind is, that your Locust script has to output the measured response times to a logfile in the same way our script does it. Use logger.info("Response time %s ms", total_time) to log the response times.

When you have your Locust script ready, execute it with python3 executor.py, pass the path to your script as argument, and when you want to finish the load test, terminate it with Ctrl + C.

Use python3 executor.py --help to get additional information.

Example call:

% python3 executor.py locust_scripts/locust_tester.py

After that, plot your results:

% python3 loadtest_plotter.py
Path to the logfile: locust_log.log
Owner
Juri Tomak
Juri Tomak
Testing Calculations in Python, using OOP (Object-Oriented Programming)

Testing Calculations in Python, using OOP (Object-Oriented Programming) Create environment with venv python3 -m venv venv Activate environment . venv

William Koller 1 Nov 11, 2021
:game_die: Pytest plugin to randomly order tests and control random.seed

pytest-randomly Pytest plugin to randomly order tests and control random.seed. Features All of these features are on by default but can be disabled wi

pytest-dev 471 Dec 30, 2022
How to Create a YouTube Bot that Increases Views using Python Programming Language

YouTube-Bot-in-Python-Selenium How to Create a YouTube Bot that Increases Views using Python Programming Language. The app is for educational purpose

Edna 14 Jan 03, 2023
Repository for JIDA SNP Browser Web Application: Local Deployment

JIDA JIDA is a web application that retrieves SNP information for a genomic region of interest in Homo sapiens and calculates specific summary statist

3 Mar 03, 2022
Auto Click by pyautogui and excel operations.

Auto Click by pyautogui and excel operations.

Janney 2 Dec 21, 2021
Pytest-rich - Pytest + rich integration (proof of concept)

pytest-rich Leverage rich for richer test session output. This plugin is not pub

Bruno Oliveira 170 Dec 02, 2022
Show coverage stats online via coveralls.io

Coveralls for Python Test Status: Version Info: Compatibility: Misc: coveralls.io is a service for publishing your coverage stats online. This package

Kevin James 499 Dec 28, 2022
Avocado is a set of tools and libraries to help with automated testing.

Welcome to Avocado Avocado is a set of tools and libraries to help with automated testing. One can call it a test framework with benefits. Native test

Ana Guerrero Lopez 1 Nov 19, 2021
Ward is a modern test framework for Python with a focus on productivity and readability.

Ward is a modern test framework for Python with a focus on productivity and readability.

Darren Burns 1k Dec 31, 2022
UX Analytics & A/B Testing

UX Analytics & A/B Testing

Marvin EDORH 1 Sep 07, 2021
Just a small test with lists in cython

Test for lists in cython Algorithm create a list of 10^4 lists each with 10^4 floats values (namely: 0.1) - 2 nested for iterate each list and compute

Federico Simonetta 32 Jul 23, 2022
The source code and slide for my talk about the subject: unittesing in python

PyTest Talk This talk give you some ideals about the purpose of unittest? how to write good unittest? how to use pytest framework? and show you the ba

nguyenlm 3 Jan 18, 2022
A library for generating fake data and populating database tables.

Knockoff Factory A library for generating mock data and creating database fixtures that can be used for unit testing. Table of content Installation Ch

Nike Inc. 30 Sep 23, 2022
Python version of the Playwright testing and automation library.

🎭 Playwright for Python Docs | API Playwright is a Python library to automate Chromium, Firefox and WebKit browsers with a single API. Playwright del

Microsoft 7.8k Jan 02, 2023
User-interest mock backend server implemnted using flask restful, and SQLAlchemy ORM confiugred with sqlite

Flask_Restful_SQLAlchemy_server User-interest mock backend server implemnted using flask restful, and SQLAlchemy ORM confiugred with sqlite. Backend b

Austin Weigel 1 Nov 17, 2022
This project demonstrates selenium's ability to extract files from a website.

This project demonstrates selenium's ability to extract files from a website. I've added the challenge of connecting over TOR. This package also includes a personal archive site built in NodeJS and A

2 Jan 16, 2022
A simple tool to test internet stability.

pingtest Description A personal project for testing internet stability, intended for use in Linux and Windows.

chris 0 Oct 17, 2021
create custom test databases that are populated with fake data

About Generate fake but valid data filled databases for test purposes using most popular patterns(AFAIK). Current support is sqlite, mysql, postgresql

Emir Ozer 2.2k Jan 04, 2023
Coverage plugin for pytest.

Overview docs tests package This plugin produces coverage reports. Compared to just using coverage run this plugin does some extras: Subprocess suppor

pytest-dev 1.4k Dec 29, 2022
API mocking with Python.

apyr apyr (all lowercase) is a simple & easy to use mock API server. It's great for front-end development when your API is not ready, or when you are

Umut Seven 55 Nov 25, 2022