PyTorch implementaton of our CVPR 2021 paper "Bridging the Visual Gap: Wide-Range Image Blending"

Overview

Bridging the Visual Gap: Wide-Range Image Blending

PyTorch implementaton of our CVPR 2021 paper "Bridging the Visual Gap: Wide-Range Image Blending".
You can visit our project website here.

In this paper, we propose a novel model to tackle the problem of wide-range image blending, which aims to smoothly merge two different images into a panorama by generating novel image content for the intermediate region between them.

Paper

Bridging the Visual Gap: Wide-Range Image Blending
Chia-Ni Lu, Ya-Chu Chang, Wei-Chen Chiu
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

Please cite our paper if you find it useful for your research.

@InProceedings{lu2021bridging,
    author = {Lu, Chia-Ni and Chang, Ya-Chu and Chiu, Wei-Chen},
    title = {Bridging the Visual Gap: Wide-Range Image Blending},
    booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month = {June},
    year = {2021}
}

Installation

  • This code was developed with Python 3.7.4 & Pytorch 1.0.0 & CUDA 9.2
  • Other requirements: numpy, skimage, tensorboardX
  • Clone this repo
git clone https://github.com/julia0607/Wide-Range-Image-Blending.git
cd Wide-Range-Image-Blending

Testing

Download our pre-trained model weights from here and put them under weights/.

Test the sample data provided in this repo:

python test.py

Or download our paired test data from here and put them under data/.
Then run the testing code:

python test.py --test_data_dir_1 ./data/scenery6000_paired/test/input1/
               --test_data_dir_2 ./data/scenery6000_paired/test/input2/

Run your own data:

python test.py --test_data_dir_1 YOUR_DATA_PATH_1
               --test_data_dir_2 YOUR_DATA_PATH_2
               --save_dir YOUR_SAVE_PATH

If your test data isn't paired already, add --rand_pair True to randomly pair the data.

Training

We adopt the scenery dataset proposed by Very Long Natural Scenery Image Prediction by Outpainting for conducting our experiments, in which we split the dataset to 5040 training images and 1000 testing images.

Download the dataset with our split of train and test set from here and put them under data/.
You can unzip the .zip file with jar xvf scenery6000_split.zip.
Then run the training code for self-reconstruction stage (first stage):

python train_SR.py

After finishing the training of self-reconstruction stage, move the latest model weights from checkpoints/SR_Stage/ to weights/, and run the training code for fine-tuning stage (second stage):

python train_FT.py --load_pretrain True

Train the model with your own dataset:

python train_SR.py --train_data_dir YOUR_DATA_PATH

After finishing the training of self-reconstruction stage, move the latest model weights to weights/, and run the training code for fine-tuning stage (second stage):

python train_FT.py --load_pretrain True
                   --train_data_dir YOUR_DATA_PATH

If your train data isn't paired already, add --rand_pair True to randomly pair the data in the fine-tuning stage.

TensorBoard Visualization

Visualization on TensorBoard for training and validation is supported. Run tensorboard --logdir YOUR_LOG_DIR to view training progress.

Acknowledgments

Our code is partially based on Very Long Natural Scenery Image Prediction by Outpainting and a pytorch re-implementation for Generative Image Inpainting with Contextual Attention.
The implementation of ID-MRF loss is borrowed from Image Inpainting via Generative Multi-column Convolutional Neural Networks.

Owner
Chia-Ni Lu
Chia-Ni Lu
BalaGAN: Image Translation Between Imbalanced Domains via Cross-Modal Transfer

BalaGAN: Image Translation Between Imbalanced Domains via Cross-Modal Transfer Project Page | Paper | Video State-of-the-art image-to-image translatio

47 Dec 06, 2022
Automatic tool focused on deriving metallicities of open clusters

metalcode Automatic tool focused on deriving metallicities of open clusters. Based on the method described in Pöhnl & Paunzen (2010, https://ui.adsabs

2 Dec 13, 2021
Modifications of the official PyTorch implementation of StyleGAN3. Let's easily generate images and videos with StyleGAN2/2-ADA/3!

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Diego Porres 185 Dec 24, 2022
This repository contains code from the paper "TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network"

TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network This repository contains code from the paper "TTS-GAN: A Transformer-based Tim

Intelligent Multimodal Computing and Sensing Laboratory (IMICS Lab) - Texas State University 108 Dec 29, 2022
SFD implement with pytorch

S³FD: Single Shot Scale-invariant Face Detector A PyTorch Implementation of Single Shot Scale-invariant Face Detector Description Meanwhile train hand

Jun Li 251 Dec 22, 2022
A programming language written with python

Kaoft A programming language written with python How to use A simple Hello World: c="Hello World" c Output: "Hello World" Operators: a=12

1 Jan 24, 2022
:hot_pepper: R²SQL: "Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing." (AAAI 2021)

R²SQL The PyTorch implementation of paper Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing. (AAAI 2021) Requirement

huybery 60 Dec 31, 2022
ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models (ICCV 2021 Oral)

ILVR + ADM This is the implementation of ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models (ICCV 2021 Oral). This repository is h

Jooyoung Choi 225 Dec 28, 2022
Everything about being a TA for ITP/AP course!

تی‌ای بودن! تی‌ای یا دستیار استاد از نقش‌های رایج بین دانشجویان مهندسی است، این ریپوزیتوری قرار است نکات مهم درمورد تی‌ای بودن و تی ای شدن را به ما نش

<a href=[email protected]"> 14 Sep 10, 2022
YOLO-v5 기반 단안 카메라의 영상을 활용해 차간 거리를 일정하게 유지하며 주행하는 Adaptive Cruise Control 기능 구현

자율 주행차의 영상 기반 차간거리 유지 개발 Table of Contents 프로젝트 소개 주요 기능 시스템 구조 디렉토리 구조 결과 실행 방법 참조 팀원 프로젝트 소개 YOLO-v5 기반으로 단안 카메라의 영상을 활용해 차간 거리를 일정하게 유지하며 주행하는 Adap

14 Jun 29, 2022
OpenCV, MediaPipe Pose Estimation, Affine Transform for Icon Overlay

Yoga Pose Identification and Icon Matching Project Goal Detect yoga poses performed by a user and overlay a corresponding icon image. Running the main

Anna Garverick 1 Dec 03, 2021
audioLIME: Listenable Explanations Using Source Separation

audioLIME This repository contains the Python package audioLIME, a tool for creating listenable explanations for machine learning models in music info

Institute of Computational Perception 27 Dec 01, 2022
Locally cache assets that are normally streamed in POPULATION: ONE

Population One Localizer This is no longer needed as of the build shipped on 03/03/22, thank you bigbox :) Locally cache assets that are normally stre

Ahman Woods 2 Mar 04, 2022
The official implementation of paper Siamese Transformer Pyramid Networks for Real-Time UAV Tracking, accepted by WACV22

SiamTPN Introduction This is the official implementation of the SiamTPN (WACV2022). The tracker intergrates pyramid feature network and transformer in

Robotics and Intelligent Systems Control @ NYUAD 28 Nov 25, 2022
[NeurIPS'20] Multiscale Deep Equilibrium Models

Multiscale Deep Equilibrium Models 💥 💥 💥 💥 This repo is deprecated and we will soon stop actively maintaining it, as a more up-to-date (and simple

CMU Locus Lab 221 Dec 26, 2022
DeepLab is a state-of-art deep learning system for semantic image segmentation built on top of Caffe.

DeepLab Introduction DeepLab is a state-of-art deep learning system for semantic image segmentation built on top of Caffe. It combines densely-compute

Ali 234 Nov 14, 2022
Code repository accompanying the paper "On Adversarial Robustness: A Neural Architecture Search perspective"

On Adversarial Robustness: A Neural Architecture Search perspective Preparation: Clone the repository: https://github.com/tdchaitanya/nas-robustness.g

Chaitanya Devaguptapu 4 Nov 10, 2022
Implementation of a Transformer that Ponders, using the scheme from the PonderNet paper

Ponder(ing) Transformer Implementation of a Transformer that learns to adapt the number of computational steps it takes depending on the difficulty of

Phil Wang 65 Oct 04, 2022
Count GitHub Stars ⭐

Count GitHub Stars per Day ⭐ Track GitHub stars per day over a date range to measure the open-source popularity of different repositories. Requirement

Ultralytics 20 Nov 20, 2022