PyTorch implementaton of our CVPR 2021 paper "Bridging the Visual Gap: Wide-Range Image Blending"

Overview

Bridging the Visual Gap: Wide-Range Image Blending

PyTorch implementaton of our CVPR 2021 paper "Bridging the Visual Gap: Wide-Range Image Blending".
You can visit our project website here.

In this paper, we propose a novel model to tackle the problem of wide-range image blending, which aims to smoothly merge two different images into a panorama by generating novel image content for the intermediate region between them.

Paper

Bridging the Visual Gap: Wide-Range Image Blending
Chia-Ni Lu, Ya-Chu Chang, Wei-Chen Chiu
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

Please cite our paper if you find it useful for your research.

@InProceedings{lu2021bridging,
    author = {Lu, Chia-Ni and Chang, Ya-Chu and Chiu, Wei-Chen},
    title = {Bridging the Visual Gap: Wide-Range Image Blending},
    booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month = {June},
    year = {2021}
}

Installation

  • This code was developed with Python 3.7.4 & Pytorch 1.0.0 & CUDA 9.2
  • Other requirements: numpy, skimage, tensorboardX
  • Clone this repo
git clone https://github.com/julia0607/Wide-Range-Image-Blending.git
cd Wide-Range-Image-Blending

Testing

Download our pre-trained model weights from here and put them under weights/.

Test the sample data provided in this repo:

python test.py

Or download our paired test data from here and put them under data/.
Then run the testing code:

python test.py --test_data_dir_1 ./data/scenery6000_paired/test/input1/
               --test_data_dir_2 ./data/scenery6000_paired/test/input2/

Run your own data:

python test.py --test_data_dir_1 YOUR_DATA_PATH_1
               --test_data_dir_2 YOUR_DATA_PATH_2
               --save_dir YOUR_SAVE_PATH

If your test data isn't paired already, add --rand_pair True to randomly pair the data.

Training

We adopt the scenery dataset proposed by Very Long Natural Scenery Image Prediction by Outpainting for conducting our experiments, in which we split the dataset to 5040 training images and 1000 testing images.

Download the dataset with our split of train and test set from here and put them under data/.
You can unzip the .zip file with jar xvf scenery6000_split.zip.
Then run the training code for self-reconstruction stage (first stage):

python train_SR.py

After finishing the training of self-reconstruction stage, move the latest model weights from checkpoints/SR_Stage/ to weights/, and run the training code for fine-tuning stage (second stage):

python train_FT.py --load_pretrain True

Train the model with your own dataset:

python train_SR.py --train_data_dir YOUR_DATA_PATH

After finishing the training of self-reconstruction stage, move the latest model weights to weights/, and run the training code for fine-tuning stage (second stage):

python train_FT.py --load_pretrain True
                   --train_data_dir YOUR_DATA_PATH

If your train data isn't paired already, add --rand_pair True to randomly pair the data in the fine-tuning stage.

TensorBoard Visualization

Visualization on TensorBoard for training and validation is supported. Run tensorboard --logdir YOUR_LOG_DIR to view training progress.

Acknowledgments

Our code is partially based on Very Long Natural Scenery Image Prediction by Outpainting and a pytorch re-implementation for Generative Image Inpainting with Contextual Attention.
The implementation of ID-MRF loss is borrowed from Image Inpainting via Generative Multi-column Convolutional Neural Networks.

Owner
Chia-Ni Lu
Chia-Ni Lu
Breast Cancer Detection 🔬 ITI "AI_Pro" Graduation Project

BreastCancerDetection - This program is designed to predict two severity of abnormalities associated with breast cancer cells: benign and malignant. Mammograms from MIAS is preprocessed and features

6 Nov 29, 2022
Code for BMVC2021 paper "Boundary Guided Context Aggregation for Semantic Segmentation"

Boundary-Guided-Context-Aggregation Boundary Guided Context Aggregation for Semantic Segmentation Haoxiang Ma, Hongyu Yang, Di Huang In BMVC'2021 Pape

Haoxiang Ma 31 Jan 08, 2023
A High-Performance Distributed Library for Large-Scale Bundle Adjustment

MegBA: A High-Performance and Distributed Library for Large-Scale Bundle Adjustment This repo contains an official implementation of MegBA. MegBA is a

旷视研究院 3D 组 336 Dec 27, 2022
(under submission) Bayesian Integration of a Generative Prior for Image Restoration

BIGPrior: Towards Decoupling Learned Prior Hallucination and Data Fidelity in Image Restoration Authors: Majed El Helou, and Sabine Süsstrunk {Note: p

Majed El Helou 22 Dec 17, 2022
Code for our paper at ECCV 2020: Post-Training Piecewise Linear Quantization for Deep Neural Networks

PWLQ Updates 2020/07/16 - We are working on getting permission from our institution to release our source code. We will release it once we are granted

54 Dec 15, 2022
This is the pytorch re-implementation of the IterNorm

IterNorm-pytorch Pytorch reimplementation of the IterNorm methods, which is described in the following paper: Iterative Normalization: Beyond Standard

Lei Huang 32 Dec 27, 2022
Official repository for the ISBI 2021 paper Transformer Assisted Convolutional Neural Network for Cell Instance Segmentation

SegPC-2021 This is the official repository for the ISBI 2021 paper Transformer Assisted Convolutional Neural Network for Cell Instance Segmentation by

Datascience IIT-ISM 13 Dec 14, 2022
(CVPR2021) Kaleido-BERT: Vision-Language Pre-training on Fashion Domain

Kaleido-BERT: Vision-Language Pre-training on Fashion Domain Mingchen Zhuge*, Dehong Gao*, Deng-Ping Fan#, Linbo Jin, Ben Chen, Haoming Zhou, Minghui

250 Jan 08, 2023
CLUES: Few-Shot Learning Evaluation in Natural Language Understanding

CLUES: Few-Shot Learning Evaluation in Natural Language Understanding This repo contains the data and source code for baseline models in the NeurIPS 2

Microsoft 29 Dec 29, 2022
⚡️Optimizing einsum functions in NumPy, Tensorflow, Dask, and more with contraction order optimization.

Optimized Einsum Optimized Einsum: A tensor contraction order optimizer Optimized einsum can significantly reduce the overall execution time of einsum

Daniel Smith 653 Dec 30, 2022
MetaBalance: Improving Multi-Task Recommendations via Adapting Gradient Magnitudes of Auxiliary Tasks

MetaBalance: Improving Multi-Task Recommendations via Adapting Gradient Magnitudes of Auxiliary Tasks Introduction This repo contains the pytorch impl

Meta Research 38 Oct 10, 2022
Classification of EEG data using Deep Learning

Graduation-Project Classification of EEG data using Deep Learning Epilepsy is the most common neurological disease in the world. Epilepsy occurs as a

Osman Alpaydın 5 Jun 24, 2022
Repository of Vision Transformer with Deformable Attention

Vision Transformer with Deformable Attention This repository contains the code for the paper Vision Transformer with Deformable Attention [arXiv]. Int

410 Jan 03, 2023
Data-Uncertainty Guided Multi-Phase Learning for Semi-supervised Object Detection

An official implementation of paper Data-Uncertainty Guided Multi-Phase Learning for Semi-supervised Object Detection

11 Nov 23, 2022
Official PyTorch implementation of the paper Image-Based CLIP-Guided Essence Transfer.

TargetCLIP- official pytorch implementation of the paper Image-Based CLIP-Guided Essence Transfer This repository finds a global direction in StyleGAN

Hila Chefer 221 Dec 13, 2022
Load What You Need: Smaller Multilingual Transformers for Pytorch and TensorFlow 2.0.

Smaller Multilingual Transformers This repository shares smaller versions of multilingual transformers that keep the same representations offered by t

Geotrend 79 Dec 28, 2022
Official implementation of Deep Convolutional Dictionary Learning for Image Denoising.

DCDicL for Image Denoising Hongyi Zheng*, Hongwei Yong*, Lei Zhang, "Deep Convolutional Dictionary Learning for Image Denoising," in CVPR 2021. (* Equ

Z80 91 Dec 21, 2022
Self-training for Few-shot Transfer Across Extreme Task Differences

Self-training for Few-shot Transfer Across Extreme Task Differences (STARTUP) Introduction This repo contains the official implementation of the follo

Cheng Perng Phoo 33 Oct 31, 2022
Code for HodgeNet: Learning Spectral Geometry on Triangle Meshes, in SIGGRAPH 2021.

HodgeNet | Webpage | Paper | Video HodgeNet: Learning Spectral Geometry on Triangle Meshes Dmitriy Smirnov, Justin Solomon SIGGRAPH 2021 Set-up To ins

Dima Smirnov 61 Nov 27, 2022
Python Fanduel API (2021) - Lineup Automation

Southpaw is a python package that provides access to the Fanduel API. Optimize your DFS experience by programmatically updating your lineups, analyzin

Brandin Canfield 13 Jan 04, 2023