TRIQ implementation

Overview

TRIQ Implementation

TF-Keras implementation of TRIQ as described in Transformer for Image Quality Assessment.

Installation

  1. Clone this repository.
  2. Install required Python packages. The code is developed by PyCharm in Python 3.7. The requirements.txt document is generated by PyCharm, and the code should also be run in latest versions of the packages.

Training a model

An example of training TRIQ can be seen in train/train_triq.py. Argparser should be used, but the authors prefer to use dictionary with parameters being defined. It is easy to convert to take arguments. In principle, the following parameters can be defined:

args = {}
args['multi_gpu'] = 0 # gpu setting, set to 1 for using multiple GPUs
args['gpu'] = 0  # If having multiple GPUs, specify which GPU to use

args['result_folder'] = r'..\databases\experiments' # Define result path
args['n_quality_levels'] = 5  # Choose between 1 (MOS prediction) and 5 (distribution prediction)

args['transformer_params'] = [2, 32, 8, 64]

args['train_folders'] =  # Define folders containing training images
    [
    r'..\databases\train\koniq_normal',
    r'..\databases\train\koniq_small',
    r'..\databases\train\live'
    ]
args['val_folders'] =  # Define folders containing testing images
    [
    r'..\databases\val\koniq_normal',
    r'..\databases\val\koniq_small',
    r'..\databases\val\live'
    ]
args['koniq_mos_file'] = r'..\databases\koniq10k_images_scores.csv'  # MOS (distribution of scores) file for KonIQ database
args['live_mos_file'] = r'..\databases\live_mos.csv'   # MOS (standard distribution of scores) file for LIVE-wild database

args['backbone'] = 'resnet50' # Choose from ['resnet50', 'vgg16']
args['weights'] = r'...\pretrained_weights\resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5'  # Define the path of ImageNet pretrained weights
args['initial_epoch'] = 0  # Define initial epoch for use in fine-tune

args['lr_base'] = 1e-4 / 2  # Define the back learning rate in warmup and rate decay approach
args['lr_schedule'] = True  # Choose between True and False, indicating if learning rate schedule should be used or not
args['batch_size'] = 32  # Batch size, should choose to fit in the GPU memory
args['epochs'] = 120  # Maximal epoch number, can set early stop in the callback or not

args['image_aug'] = True # Choose between True and False, indicating if image augmentation should be used or not

Predict image quality using the trained model

After TRIQ has been trained, and the weights have been stored in h5 file, it can be used to predict image quality with arbitrary sizes,

    args = {}
    args['n_quality_levels'] = 5
    args['backbone'] = 'resnet50'
    args['weights'] = r'..\\TRIQ.h5'
    model = create_triq_model(n_quality_levels=args['n_quality_levels'],
                              backbone=args['backbone'],])
    model.load_weights(args['weights'])

And then use ModelEvaluation to predict quality of image set.

In the "examples" folder, an example script examples\image_quality_prediction.py is provided to use the trained weights to predict quality of example images. In the "train" folder, an example script train\validation.py is provided to use the trained weights to predict quality of images in folders.

A potential issue is image shape mismatch. For example, if an image is too large, then line 146 in transformer_iqa.py should be changed to increase the pooling size. For example, it can be changed to self.pooling_small = MaxPool2D(pool_size=(4, 4)) or even larger.

Prepare datasets for model training

This work uses two publicly available databases: KonIQ-10k KonIQ-10k: An ecologically valid database for deep learning of blind image quality assessment by V. Hosu, H. Lin, T. Sziranyi, and D. Saupe; and LIVE-wild Massive online crowdsourced study of subjective and objective picture quality by D. Ghadiyaram, and A.C. Bovik

  1. The two databases were merged, and then split to training and testing sets. Please see README in databases for details.

  2. Make MOS files (note: do NOT include head line):

    For database with score distribution available, the MOS file is like this (koniq format):

        image path, voter number of quality scale 1, voter number of quality scale 2, voter number of quality scale 3, voter number of quality scale 4, voter number of quality scale 5, MOS or Z-score
        10004473376.jpg,0,0,25,73,7,3.828571429
        10007357496.jpg,0,3,45,47,1,3.479166667
        10007903636.jpg,1,0,20,73,2,3.78125
        10009096245.jpg,0,0,21,75,13,3.926605505
    

    For database with standard deviation available, the MOS file is like this (live format):

        image path, standard deviation, MOS or Z-score
        t1.bmp,18.3762,63.9634
        t2.bmp,13.6514,25.3353
        t3.bmp,18.9246,48.9366
        t4.bmp,18.2414,35.8863
    

    The format of MOS file ('koniq' or 'live') and the format of MOS or Z-score ('mos' or 'z_score') should also be specified in misc/imageset_handler/get_image_scores.

  3. In the train script in train/train_triq.py the folders containing training and testing images are provided.

  4. Pretrained ImageNet weights can be downloaded (see README in.\pretrained_weights) and pointed to in the train script.

Trained TRIQ weights

TRIQ has been trained on KonIQ-10k and LIVE-wild databases, and the weights file can be downloaded here.

State-of-the-art models

Other three models are also included in the work. The original implementations of metrics are employed, and they can be found below.

Koncept512 KonIQ-10k: An ecologically valid database for deep learning of blind image quality assessment

SGDNet SGDNet: An end-to-end saliency-guided deep neural network for no-reference image quality assessment

CaHDC End-to-end blind image quality prediction with cascaded deep neural network

Comparison results

We have conducted several experiments to evaluate the performance of TRIQ, please see results.pdf for detailed results.

Error report

In case errors/exceptions are encountered, please first check all the paths. After fixing the path isse, please report any errors in Issues.

FAQ

  • To be added

ViT (Vision Transformer) for IQA

This work is heavily inspired by ViT An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. The module vit_iqa contains implementation of ViT for IQA, and mainly followed the implementation of ViT-PyTorch. Pretrained ViT weights can be downloaded here.

Owner
Junyong You
Junyong You
Attention for PyTorch with Linear Memory Footprint

Attention for PyTorch with Linear Memory Footprint Unofficially implements https://arxiv.org/abs/2112.05682 to get Linear Memory Cost on Attention (+

11 Jan 09, 2022
Code for 'Blockwise Sequential Model Learning for Partially Observable Reinforcement Learning' (AAAI 2022)

Blockwise Sequential Model Learning Code for 'Blockwise Sequential Model Learning for Partially Observable Reinforcement Learning' (AAAI 2022) For ins

2 Jun 17, 2022
A script that trains a model to recognize handwritten digits using the MNIST data set.

handwritten-digits-recognition A script that trains a model to recognize handwritten digits using the MNIST data set. Then it loads external files and

Hamza Sayih 1 Oct 30, 2021
Hierarchical Clustering: O(1)-Approximation for Well-Clustered Graphs

Hierarchical Clustering: O(1)-Approximation for Well-Clustered Graphs This repository contains code to accompany the paper "Hierarchical Clustering: O

3 Sep 25, 2022
[CVPR 2022 Oral] TubeDETR: Spatio-Temporal Video Grounding with Transformers

TubeDETR: Spatio-Temporal Video Grounding with Transformers Website • STVG Demo • Paper This repository provides the code for our paper. This includes

Antoine Yang 108 Dec 27, 2022
A Small and Easy approach to the BraTS2020 dataset (2D Segmentation)

BraTS2020 A Light & Scalable Solution to BraTS2020 | Medical Brain Tumor Segmentation (2D Segmentation) Developed the segmentation models for segregat

Gunjan Haldar 0 Jan 19, 2022
Unsupervised clustering of high content screen samples

Microscopium Unsupervised clustering and dataset exploration for high content screens. See microscopium in action Public dataset BBBC021 from the Broa

60 Dec 05, 2022
Deformable DETR is an efficient and fast-converging end-to-end object detector.

Deformable DETR: Deformable Transformers for End-to-End Object Detection.

2k Jan 05, 2023
Companion code for the paper "An Infinite-Feature Extension for Bayesian ReLU Nets That Fixes Their Asymptotic Overconfidence" (NeurIPS 2021)

ReLU-GP Residual (RGPR) This repository contains code for reproducing the following NeurIPS 2021 paper: @inproceedings{kristiadi2021infinite, title=

Agustinus Kristiadi 4 Dec 26, 2021
A simple python program that can be used to implement user authentication tokens into your program...

token-generator A simple python module that can be used by developers to implement user authentication tokens into your program... code examples creat

octo 6 Apr 18, 2022
This is the official PyTorch implementation for "Mesa: A Memory-saving Training Framework for Transformers".

Mesa: A Memory-saving Training Framework for Transformers This is the official PyTorch implementation for Mesa: A Memory-saving Training Framework for

Zhuang AI Group 105 Dec 06, 2022
🏖 Keras Implementation of Painting outside the box

Keras implementation of Image OutPainting This is an implementation of Painting Outside the Box: Image Outpainting paper from Standford University. So

Bendang 1.1k Dec 10, 2022
Doing the asl sign language classification on static images using graph neural networks.

SignLangGNN When GNNs 💜 MediaPipe. This is a starter project where I tried to implement some traditional image classification problem i.e. the ASL si

10 Nov 09, 2022
Interactive web apps created using geemap and streamlit

geemap-apps Introduction This repo demostrates how to build a multi-page Earth Engine App using streamlit and geemap. You can deploy the app on variou

Qiusheng Wu 27 Dec 23, 2022
A simple Rock-Paper-Scissors game using CV in python

ML18_Rock-Paper-Scissors-using-CV A simple Rock-Paper-Scissors game using CV in python For IITISOC-21 Rules and procedure to play the interactive game

Anirudha Bhagwat 3 Aug 08, 2021
CRF-RNN for Semantic Image Segmentation - PyTorch version

This repository contains the official PyTorch implementation of the "CRF-RNN" semantic image segmentation method, published in the ICCV 2015

Sadeep Jayasumana 170 Dec 13, 2022
This repository contains FEDOT - an open-source framework for automated modeling and machine learning (AutoML)

package tests docs license stats support This repository contains FEDOT - an open-source framework for automated modeling and machine learning (AutoML

National Center for Cognitive Research of ITMO University 482 Dec 26, 2022
for a paper about leveraging discourse markers for training new models

TSLM-DISCOURSE-MARKERS Scope This repository contains: (1) Code to extract discourse markers from wikipedia (TSA). (1) Code to extract significant dis

International Business Machines 6 Nov 02, 2022
📚 Papermill is a tool for parameterizing, executing, and analyzing Jupyter Notebooks.

papermill is a tool for parameterizing, executing, and analyzing Jupyter Notebooks. Papermill lets you: parameterize notebooks execute notebooks This

nteract 5.1k Jan 03, 2023
HMLET (Hybrid-Method-of-Linear-and-non-linEar-collaborative-filTering-method)

Methods HMLET (Hybrid-Method-of-Linear-and-non-linEar-collaborative-filTering-method) Dynamically selecting the best propagation method for each node

Yong 7 Dec 18, 2022