Keras documentation, hosted live at keras.io

Related tags

Deep Learningkeras-io
Overview

Keras.io documentation generator

This repository hosts the code used to generate the keras.io website.

Generating a local copy of the website

pip install -r requirements.txt
cd scripts
python autogen.py make
python autogen.py serve

If you have Docker (you don't need the gpu version of Docker), you can run instead:

docker build -t keras-io . && docker run --rm -p 8000:8000 keras-io

It will take a while the first time because it's going to pull the image and the dependencies, but on the next times it'll be much faster.

Another way of testing using Docker is via our Makefile:

make container-test

This command will build a Docker image with a documentation server and run it.

Call for examples

Are you interested in submitting new examples for publication on keras.io? We welcome your contributions! Please read the information below about adding new code examples.

We are currently interested in the following examples.

Adding a new code example

Keras code examples are implemented as tutobooks.

A tutobook is a script available simultaneously as a notebook, as a Python file, and as a nicely-rendered webpage.

Its source-of-truth (for manual edition and version control) is its Python script form, but you can also create one by starting from a notebook and converting it with the command nb2py.

Text cells are stored in markdown-formatted comment blocks. the first line (starting with """) may optionally contain a special annotation, one of:

  • shell: execute this block while prefixing each line with !.
  • invisible: do not render this block.

The script form should start with a header with the following fields:

Title: (title)
Author: (could be `Authors`: as well, and may contain markdown links)
Date created: (date in yyyy/mm/dd format)
Last modified: (date in yyyy/mm/dd format)
Description: (one-line text description)

To see examples of tutobooks, you can check out any .py file in examples/ or guides/.

Creating a new example starting from a ipynb file

  1. Save the ipynb file to local disk.
  2. Convert the file to a tutobook by running: (assuming you are in the scripts/ directory)
python tutobooks.py nb2py path_to_your_nb.ipynb ../examples/vision/script_name.py

This will create the file examples/vision/script_name.py.

  1. Open it, fill in the headers, and generally edit it so that it looks nice.

NOTE THAT THE CONVERSION SCRIPT MAY MAKE MISTAKES IN ITS ATTEMPTS TO SHORTEN LINES. MAKE SURE TO PROOFREAD THE GENERATED .py IN FULL. Or alternatively, make sure to keep your lines reasonably-sized (<90 char) to start with, so that the script won't have to shorten them.

  1. Run python autogen.py add_example vision/script_name. This will generate an ipynb and markdown rendering of your example, creating files in examples/vision/ipynb, examples/vision/md, and examples/vision/img. Do not modify any of these files by hand; only the original Python script should ever be edited manually.
  2. Submit a PR adding examples/vision/script_name.py (only the .py, not the generated files). Get a review and approval.
  3. Once the PR is approved, add to the PR the files created by the add_example command. Then we will merge the PR.

Creating a new example starting from a Python script

  1. Format the script with black: black script_name.py
  2. Add tutobook header
  3. Put the script in the relevant subfolder of examples/ (e.g. examples/vision/script_name)
  4. Run python autogen.py add_example vision/script_name. This will generate an ipynb and markdown rendering of your example, creating files in examples/vision/ipynb, examples/vision/md, and examples/vision/img. Do not modify any of these files by hand; only the original Python script should ever be edited manually.
  5. Submit a PR adding examples/vision/script_name.py (only the .py, not the generated files). Get a review and approval.
  6. Once the PR is approved, add to the PR the files created by the add_example command. Then we will merge the PR.

Previewing a new example

You can locally preview what the example looks like by running:

cd scripts
python autogen.py add_example vision/script_name

(Assuming the tutobook file is examples/vision/script_name.py.)

NOTE THAT THIS COMMAND WILL ERROR OUT IF ANY CELLS TAKES TOO LONG TO EXECUTE. In that case, make your code lighter/faster. Remember that examples are meant to demonstrate workflows, not train state-of-the-art models. They should stay very lightweight.

Then serving the website:

python autogen.py make
python autogen.py serve

And navigating to 0.0.0.0:8000/examples.

Read-only autogenerated files

The contents of the following folders should not be modified by hand:

  • site/*
  • sources/*
  • templates/examples/*
  • templates/guides/*
  • examples/*/md/*, examples/*/ipynb/*, examples/*/img/*
  • guides/md/*, guides/ipynb/*, guides/img/*

Modifiable files

These are the only files that should be edited by hand:

  • templates/*.md, with the exception of templates/examples/* and templates/guides/*
  • examples/*/*.py
  • guides/*.py
  • theme/*
  • scripts/*.py
Owner
Keras
Deep Learning for humans
Keras
Object DGCNN and DETR3D, Our implementations are built on top of MMdetection3D.

Object DGCNN & DETR3D This repo contains the implementations of Object DGCNN (https://arxiv.org/abs/2110.06923) and DETR3D (https://arxiv.org/abs/2110

Wang, Yue 539 Jan 07, 2023
This repository contains a toolkit for collecting, labeling and tracking object keypoints

This repository contains a toolkit for collecting, labeling and tracking object keypoints. Object keypoints are semantic points in an object's coordinate frame.

ETHZ ASL 13 Dec 12, 2022
Plenoxels: Radiance Fields without Neural Networks

Plenoxels: Radiance Fields without Neural Networks Alex Yu*, Sara Fridovich-Keil*, Matthew Tancik, Qinhong Chen, Benjamin Recht, Angjoo Kanazawa UC Be

Sara Fridovich-Keil 81 Dec 25, 2022
OCR Post Correction for Endangered Language Texts

📌 Coming soon: an update to the software including features from our paper on semi-supervised OCR post-correction, to be published in the Transaction

Shruti Rijhwani 96 Dec 31, 2022
Sequence-to-Sequence learning using PyTorch

Seq2Seq in PyTorch This is a complete suite for training sequence-to-sequence models in PyTorch. It consists of several models and code to both train

Elad Hoffer 514 Nov 17, 2022
A PyTorch implementation of "Signed Graph Convolutional Network" (ICDM 2018).

SGCN ⠀ A PyTorch implementation of Signed Graph Convolutional Network (ICDM 2018). Abstract Due to the fact much of today's data can be represented as

Benedek Rozemberczki 251 Nov 30, 2022
Code for the Population-Based Bandits Algorithm, presented at NeurIPS 2020.

Population-Based Bandits (PB2) Code for the Population-Based Bandits (PB2) Algorithm, from the paper Provably Efficient Online Hyperparameter Optimiza

Jack Parker-Holder 22 Nov 16, 2022
Collection of NLP model explanations and accompanying analysis tools

Thermostat is a large collection of NLP model explanations and accompanying analysis tools. Combines explainability methods from the captum library wi

126 Nov 22, 2022
Code to reproduce the experiments from our NeurIPS 2021 paper " The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective"

Code To run: python runner.py new --save SAVE_NAME --data PATH_TO_DATA_DIR --dataset DATASET --model model_name [options] --n 1000 - train - t

Geoff Pleiss 5 Dec 12, 2022
Code of paper "CDFI: Compression-Driven Network Design for Frame Interpolation", CVPR 2021

CDFI (Compression-Driven-Frame-Interpolation) [Paper] (Coming soon...) | [arXiv] Tianyu Ding*, Luming Liang*, Zhihui Zhu, Ilya Zharkov IEEE Conference

Tianyu Ding 95 Dec 04, 2022
This is the PyTorch implementation of GANs N’ Roses: Stable, Controllable, Diverse Image to Image Translation

Official PyTorch repo for GAN's N' Roses. Diverse im2im and vid2vid selfie to anime translation.

1.1k Jan 01, 2023
Dilated RNNs in pytorch

PyTorch Dilated Recurrent Neural Networks PyTorch implementation of Dilated Recurrent Neural Networks (DilatedRNN). Getting Started Installation: $ pi

Zalando Research 200 Nov 17, 2022
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

Chao Ma 3k Jan 03, 2023
Allows including an action inside another action (by preprocessing the Yaml file). This is how composite actions should have worked.

actions-includes Allows including an action inside another action (by preprocessing the Yaml file). Instead of using uses or run in your action step,

Tim Ansell 70 Nov 04, 2022
YOLOv5🚀 reproduction by Guo Quanhao using PaddlePaddle

YOLOv5-Paddle YOLOv5 🚀 reproduction by Guo Quanhao using PaddlePaddle 支持AutoBatch 支持AutoAnchor 支持GPU Memory 快速开始 使用AIStudio高性能环境快速构建YOLOv5训练(PaddlePa

QuanHao Guo 20 Nov 14, 2022
IAST: Instance Adaptive Self-training for Unsupervised Domain Adaptation (ECCV 2020)

This repo is the official implementation of our paper "Instance Adaptive Self-training for Unsupervised Domain Adaptation". The purpose of this repo is to better communicate with you and respond to y

CVSM Group - email: <a href=[email protected]"> 84 Dec 12, 2022
Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models Benchmark and Efficient Evaluation

Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models Benchmark and Efficient Evaluation This reposi

First Person Vision @ Image Processing Laboratory - University of Catania 1 Aug 21, 2022
Repo for CVPR2021 paper "QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information"

QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information by Masato Tamura, Hiroki Ohashi, and Tomoaki Yosh

105 Dec 23, 2022
A machine learning malware analysis framework for Android apps.

🕵️ A machine learning malware analysis framework for Android apps. ☢️ DroidDetective is a Python tool for analysing Android applications (APKs) for p

James Stevenson 77 Dec 27, 2022
CryptoFrog - My First Strategy for freqtrade

cryptofrog-strategies CryptoFrog - My First Strategy for freqtrade NB: (2021-04-20) You'll need the latest freqtrade develop branch otherwise you migh

Robert Davey 137 Jan 01, 2023