Text-Based Ideal Points

Related tags

Deep Learningtbip
Overview

Text-Based Ideal Points

Source code for the paper: Text-Based Ideal Points by Keyon Vafa, Suresh Naidu, and David Blei (ACL 2020).

Update (June 29, 2020): We have added interactive visualizations of topics learned by our model.

Update (May 25, 2020): We have added a PyTorch implementation of the text-based ideal point model.

Update (May 11, 2020): See our Colab notebook to run the model online. Our Github code is more complete, and it can be used to reproduce all of our experiments. However, the TBIP is fastest on GPU, so if you do not have access to a GPU you can use Colab's GPUs for free.

Installation for GPU

Configure a virtual environment using Python 3.6+ (instructions here). Inside the virtual environment, use pip to install the required packages:

(venv)$ pip install -r requirements.txt

The main dependencies are Tensorflow (1.14.0) and Tensorflow Probability (0.7.0).

Installation for CPU

To run on CPU, a version of Tensorflow that does not use GPU must be installed. In requirements.txt, comment out the line that says tensorflow-gpu==1.14.0 and uncomment the line that says tensorflow==1.14.0. Note: the script will be noticeably slower on CPU.

Data

Preprocessed Senate speech data for the 114th Congress is included in data/senate-speeches-114. The original data is from [1]. Preprocessed 2020 Democratic presidential candidate tweet data is included in data/candidate-tweets-2020.

To include a customized data set, first create a repo data/{dataset_name}/clean/. The following four files must be inside this folder:

  • counts.npz: a [num_documents, num_words] sparse CSR matrix containing the word counts for each document.
  • author_indices.npy: a [num_documents] vector where each entry is an integer in the set {0, 1, ..., num_authors - 1}, indicating the author of the corresponding document in counts.npz.
  • vocabulary.txt: a [num_words]-length file where each line denotes the corresponding word in the vocabulary.
  • author_map.txt: a [num_authors]-length file where each line denotes the name of an author in the corpus.

See data/senate-speeches-114/clean for an example of what the four files look like for Senate speeches. The script setup/senate_speeches_to_bag_of_words.py contains example code for creating the four files from unprocessed data.

Learning text-based ideal points

Run tbip.py to produce ideal points. For the Senate speech data, use the command:

(venv)$ python tbip.py  --data=senate-speeches-114  --batch_size=512  --max_steps=100000

You can view Tensorboard while training to see summaries of training (including the learned ideal points and ideological topics). To run Tensorboard, use the command:

(venv)$ tensorboard  --logdir=data/senate-speeches-114/tbip-fits/  --port=6006

The command should output a link where you can view the Tensorboard results in real time. The fitted parameters will be stored in data/senate-speeches-114/tbip-fits/params. To perform the above analyses for the 2020 Democratic candidate tweets, replace senate-speeches-114 with candidate-tweets-2020.

To run custom data, we recommend training Poisson factorization before running the TBIP script for best results. If you have custom data stored in data/{dataset_name}/clean/, you can run

(venv)$ python setup/poisson_factorization.py  --data={dataset_name}

The default number of topics is 50. To use a different number of topics, e.g. 100, use the flag --num_topics=100. After Poisson factorization finishes, use the following command to run the TBIP:

(venv)$ python tbip.py  --data={dataset_name}

You can adjust the batch size, learning rate, number of topics, and number of steps by using the flags --batch_size, --learning_rate, --num_topics, and --max_steps, respectively. To run the TBIP without initializing from Poisson factorization, use the flag --pre_initialize_parameters=False. To view the results in Tensorboard, run

(venv)$ tensorboard  --logdir=data/{dataset_name}/tbip-fits/  --port=6006

Again, the learned parameters will be stored in data/{dataset_name}/tbip-fits/params.

Reproducing Paper Results

NOTE: Since the publication of our paper, we have made small changes to the code that have sped up inference. A byproduct of these changes is that the Tensorflow graph has changed, so its random seed does not produce the same results as before the changes, even though the data, model, and inference are all the same. To reproduce the exact paper results, one must git checkout to a version of our repository from before these changes:

(venv)$ git checkout 31d161e

The commands below will reproduce all of the paper results. The following data is required before running the commands:

  • Senate votes: The original raw data can be found at [2]. The paper includes experiments for Senate sessions 111-114. For each Senate session, we need three files: one for votes, one for members, and one for rollcalls. For example, for Senate session 114, we would use the files: S114_votes.csv, S114_members.csv, S114_rollcalls.csv. Make a repo data/senate-votes and store these three files in data/senate-votes/114/raw/. Repeat for Senate sessions 111-113.
  • Senate speeches: The original raw data can be found at [1]. Specifically, we use the hein-daily data for the 114th Senate session. The files needed are speeches_114.txt, descr_114.txt, and 114_SpeakerMap.txt. Make sure the relevant files are stored in data/senate-speeches-114/raw/.
  • Senator tweets: The data was provided to us by Voxgov [3].
  • Senate speech comparisons: We use a separate data set for the Senate speech comparisons because speech debates must be labeled for Wordshoal. The raw data can be found at [4]. The paper includes experiments for Senate sessions 111-113. We need the files speaker_senator_link_file.csv, speeches_Senate_111.tab, speeches_Senate_112.tab, and speeches_Senate_113.tab. These files should all be stored in data/senate-speech-comparisons/raw/.
  • Democratic presidential candidate tweets: Download the raw tweets here and store tweets.csv in the folder data/candidate-tweets-2020/raw/.

Preprocess, run vote ideal point model, and perform analysis for Senate votes

(venv)$ python setup/preprocess_senate_votes.py  --senate_session=111
(venv)$ python setup/preprocess_senate_votes.py  --senate_session=112
(venv)$ python setup/preprocess_senate_votes.py  --senate_session=113
(venv)$ python setup/preprocess_senate_votes.py  --senate_session=114
(venv)$ python setup/vote_ideal_points.py  --senate_session=111
(venv)$ python setup/vote_ideal_points.py  --senate_session=112
(venv)$ python setup/vote_ideal_points.py  --senate_session=113
(venv)$ python setup/vote_ideal_points.py  --senate_session=114
(venv)$ python analysis/analyze_vote_ideal_points.py

Preprocess, run the TBIP, and perform analysis for Senate speeches for the 114th Senate

(venv)$ python setup/senate_speeches_to_bag_of_words.py
(venv)$ python setup/poisson_factorization.py  --data=senate-speeches-114
(venv)$ python tbip.py  --data=senate-speeches-114  --counts_transformation=log  --batch_size=512  --max_steps=150000
(venv)$ python analysis/analyze_senate_speeches.py

Preprocess, run the TBIP and Wordfish, and perform analysis for tweets from senators during the 114th Senate

(venv)$ python setup/senate_tweets_to_bag_of_words.py
(venv)$ python setup/poisson_factorization.py  --data=senate-tweets-114
(venv)$ python tbip.py  --data=senate-tweets-114  --batch_size=1024  --max_steps=100000
(venv)$ python model_comparison/wordfish.py  --data=senate-tweets-114  --max_steps=50000
(venv)$ python analysis/analyze_senate_tweets.py

Preprocess and run the TBIP for Senate speech comparisons

(venv)$ python setup/preprocess_senate_speech_comparisons.py  --senate_session=111
(venv)$ python setup/preprocess_senate_speech_comparisons.py  --senate_session=112
(venv)$ python setup/preprocess_senate_speech_comparisons.py  --senate_session=113
(venv)$ python setup/poisson_factorization.py  --data=senate-speech-comparisons  --senate_session=111
(venv)$ python setup/poisson_factorization.py  --data=senate-speech-comparisons  --senate_session=112
(venv)$ python setup/poisson_factorization.py  --data=senate-speech-comparisons  --senate_session=113
(venv)$ python tbip.py  --data=senate-speech-comparisons  --max_steps=200000  --senate_session=111  --batch_size=128
(venv)$ python tbip.py  --data=senate-speech-comparisons  --max_steps=200000  --senate_session=112  --batch_size=128
(venv)$ python tbip.py  --data=senate-speech-comparisons  --max_steps=200000  --senate_session=113  --batch_size=128

Run Wordfish for Senate speech comparisons

(venv)$ python model_comparison/wordfish.py  --data=senate-speech-comparisons  --max_steps=50000  --senate_session=111
(venv)$ python model_comparison/wordfish.py  --data=senate-speech-comparisons  --max_steps=50000  --senate_session=112 
(venv)$ python model_comparison/wordfish.py  --data=senate-speech-comparisons  --max_steps=50000  --senate_session=113

Run Wordshoal for Senate speech comparisons

(venv)$ python model_comparison/wordshoal.py  --data=senate-speech-comparisons  --max_steps=30000  --senate_session=111  --batch_size=1024
(venv)$ python model_comparison/wordshoal.py  --data=senate-speech-comparisons  --max_steps=30000  --senate_session=112  --batch_size=1024
(venv)$ python model_comparison/wordshoal.py  --data=senate-speech-comparisons  --max_steps=30000  --senate_session=113  --batch_size=1024

Analyze results for Senate speech comparisons

(venv)$ python analysis/compare_tbip_wordfish_wordshoal.py

Preprocess, run the TBIP, and perform analysis for Democratic candidate tweets

(venv)$ python setup/candidate_tweets_to_bag_of_words.py
(venv)$ python setup/poisson_factorization.py  --data=candidate-tweets-2020
(venv)$ python tbip.py  --data=candidate-tweets-2020  --batch_size=1024  --max_steps=100000
(venv)$ python analysis/analyze_candidate_tweets.py

Make figures

(venv)$ python analysis/make_figures.py

References

[1] Matthew Gentzkow, Jesse M. Shapiro, and Matt Taddy. Congressional Record for the 43rd-114th Congresses: Parsed Speeches and Phrase Counts. Palo Alto, CA: Stanford Libraries [distributor], 2018-01-16. https://data.stanford.edu/congress_text

[2] Jeffrey B. Lewis, Keith Poole, Howard Rosenthal, Adam Boche, Aaron Rudkin, and Luke Sonnet (2020). Voteview: Congressional Roll-Call Votes Database. https://voteview.com/

[3] VoxGovFEDERAL, U.S. Senators tweets from the 114th Congress. 2020. https://voxgov.com

[4] Benjamin E. Lauderdale and Alexander Herzog. Replication Data for: Measuring Political Positions from Legislative Speech. In Harvard Dataverse, 2016. https://doi.org/10.7910/DVN/RQMIV3

Owner
Keyon Vafa
Keyon Vafa
Repo for EchoVPR: Echo State Networks for Visual Place Recognition

EchoVPR Repo for EchoVPR: Echo State Networks for Visual Place Recognition Currently under development Dirs: data: pre-collected hidden representation

Anil Ozdemir 4 Oct 04, 2022
Implementation of CVPR 2021 paper "Spatially-invariant Style-codes Controlled Makeup Transfer"

SCGAN Implementation of CVPR 2021 paper "Spatially-invariant Style-codes Controlled Makeup Transfer" Prepare The pre-trained model is avaiable at http

118 Dec 12, 2022
Adversarially Learned Inference

Adversarially Learned Inference Code for the Adversarially Learned Inference paper. Compiling the paper locally From the repo's root directory, $ cd p

Mohamed Ishmael Belghazi 308 Sep 24, 2022
PaSST: Efficient Training of Audio Transformers with Patchout

PaSST: Efficient Training of Audio Transformers with Patchout This is the implementation for Efficient Training of Audio Transformers with Patchout Pa

165 Dec 26, 2022
Yolact-keras实例分割模型在keras当中的实现

Yolact-keras实例分割模型在keras当中的实现 目录 性能情况 Performance 所需环境 Environment 文件下载 Download 训练步骤 How2train 预测步骤 How2predict 评估步骤 How2eval 参考资料 Reference 性能情况 训练数

Bubbliiiing 11 Dec 26, 2022
Complex-Valued Neural Networks (CVNN)Complex-Valued Neural Networks (CVNN)

Complex-Valued Neural Networks (CVNN) Done by @NEGU93 - J. Agustin Barrachina Using this library, the only difference with a Tensorflow code is that y

youceF 1 Nov 12, 2021
An implementation of IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG Classification

IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG Classification The repostiory consists of the code, results and data set links for

12 Dec 26, 2022
A library for differentiable nonlinear optimization.

Theseus A library for differentiable nonlinear optimization built on PyTorch to support constructing various problems in robotics and vision as end-to

Meta Research 1.1k Dec 30, 2022
A toy compiler that can convert Python scripts to pickle bytecode 🥒

Pickora 🐰 A small compiler that can convert Python scripts to pickle bytecode. Requirements Python 3.8+ No third-party modules are required. Usage us

ꌗᖘ꒒ꀤ꓄꒒ꀤꈤꍟ 68 Jan 04, 2023
Fast mesh denoising with data driven normal filtering using deep variational autoencoders

Fast mesh denoising with data driven normal filtering using deep variational autoencoders This is an implementation for the paper entitled "Fast mesh

9 Dec 02, 2022
docTR by Mindee (Document Text Recognition) - a seamless, high-performing & accessible library for OCR-related tasks powered by Deep Learning.

docTR by Mindee (Document Text Recognition) - a seamless, high-performing & accessible library for OCR-related tasks powered by Deep Learning.

Mindee 1.5k Jan 01, 2023
Solving SMPL/MANO parameters from keypoint coordinates.

Minimal-IK A simple and naive inverse kinematics solver for MANO hand model, SMPL body model, and SMPL-H body+hand model. Briefly, given joint coordin

Yuxiao Zhou 305 Dec 30, 2022
A Light in the Dark: Deep Learning Practices for Industrial Computer Vision

A Light in the Dark: Deep Learning Practices for Industrial Computer Vision This is the repository for our Paper/Contribution to the WI2022 in Nürnber

Maximilian Harl 6 Jan 17, 2022
Table-Extractor 表格抽取

(t)able-(ex)tractor 本项目旨在实现pdf表格抽取。 Models 版面分析模块(Yolo) 表格结构抽取(ResNet + Transformer) 文字识别模块(CRNN + CTC Loss) Acknowledgements TableMaster attention-i

2 Jan 15, 2022
Pytorch implementation of Deep Recursive Residual Network for Super Resolution (DRRN)

DRRN-pytorch This is an unofficial implementation of "Deep Recursive Residual Network for Super Resolution (DRRN)", CVPR 2017 in Pytorch. [Paper] You

yun_yang 192 Dec 12, 2022
MolRep: A Deep Representation Learning Library for Molecular Property Prediction

MolRep: A Deep Representation Learning Library for Molecular Property Prediction Summary MolRep is a Python package for fairly measuring algorithmic p

AI-Health @NSCC-gz 83 Dec 24, 2022
LSTMs (Long Short Term Memory) RNN for prediction of price trends

Price Prediction with Recurrent Neural Networks LSTMs BTC-USD price prediction with deep learning algorithm. Artificial Neural Networks specifically L

5 Nov 12, 2021
A pre-trained language model for social media text in Spanish

RoBERTuito A pre-trained language model for social media text in Spanish READ THE FULL PAPER Github Repository RoBERTuito is a pre-trained language mo

25 Dec 29, 2022
Spectrum is an AI that uses machine learning to generate Rap song lyrics

Spectrum Spectrum is an AI that uses deep learning to generate rap song lyrics. View Demo Report Bug Request Feature Open In Colab About The Project S

39 Dec 16, 2022
Low Complexity Channel estimation with Neural Network Solutions

Interpolation-ResNet Invited paper for WSA 2021, called 'Low Complexity Channel estimation with Neural Network Solutions'. Low complexity residual con

Dianxin 10 Dec 10, 2022