Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network

Related tags

Deep LearningDeepCDR
Overview

DeepCDR

Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network

This work has been accepted to ECCB2020 and was also published in the journal Bioinformatics.

model

DeepCDR is a hybrid graph convolutional network for cancer drug response prediction. It takes both multi-omics data of cancer cell lines and drug structure as inputs and predicts the drug sensitivity (binary or contineous IC50 value).

Requirements

  • Keras==2.1.4
  • TensorFlow==1.13.1
  • hickle >= 2.1.0

Installation

DeepCDR can be downloaded by

git clone https://github.com/kimmo1019/DeepCDR

Installation has been tested in a Linux/MacOS platform.

Instructions

We provide detailed step-by-step instructions for running DeepCDR model including data preprocessing, model training, and model test.

Model implementation

Step 1: Data Preparing

Three types of raw data are required to generate genomic mutation matrix, gene expression matrix and DNA methylation matrix from CCLE database.

CCLE_mutations.csv - Genomic mutation profile from CCLE database

CCLE_expression.csv - Gene expression profile from CCLE database

CCLE_RRBS_TSS_1kb_20180614.txt - DNA methylation profile from CCLE database

The three types of raw data genomic mutation file, gene expression file and DNA methylation file can be downloaded from CCLE database or from our provided Cloud Server.

After data preprocessed, the three following preprocessed files will be in located in data folder.

genomic_mutation_34673_demap_features.csv -- genomic mutation matrix where each column denotes mutation locus and each row denotes a cell line

genomic_expression_561celllines_697genes_demap_features.csv -- gene expression matrix where each column denotes a coding gene and each row denotes a cell line

genomic_methylation_561celllines_808genes_demap_features.csv -- DNA methylation matrix where each column denotes a methylation locus and each row denotes a cell line

We recommend to start from the preprocessed data. Please note that each preprocessed file is in csv format, of which the column and row name are provided to speficy mutation location, gene name, methylation location and corresponding Cell line.

Step 2: Drug feature representation

Each drug in our study will be represented as a graph containing nodes and edges. From the GDSC database, we collected 223 drugs that have unique Pubchem ids. Note that a drug under different screening condition (different GDSC drug id) may share the same Pubchem id. Here, we used deepchem library for extracting node features and gragh of a drug. The node feature (75 dimension) corresponds to a stom in within a drug, which includes atom type, degree and hybridization, etc.

We recorded three types of features in a list as following

drug_feat = [node_feature, adj_list, degree_list]
node_feature - features of all atoms within a drug with size (nb_atom, 75)
adj_list - adjacent list of all atoms within a drug. It denotes the all the neighboring atoms indexs
degree_list - degree list of all atoms within a drug. It denotes the number of neighboring atoms 

The above feature list will be further compressed as pubchem_id.hkl using hickle library.

Please note that we provided the extracted features of 223 drugs from GDSC database, just unzip the drug_graph_feat.zip file in data/GDSC folder

Step 3: DeepCDR model training and testing

Here, we provide both DeepCDR regression and classification model here.

DeepCDR regression model

python run_DeepCDR.py -gpu_id [gpu_id] -use_mut [use_mut] -use_gexp [use_gexp] -use_methy [use_methy] 
[gpu_id] - set GPU card id (default:0)
[use_mut] - whether use genomic mutation data (default: True)
[use_gexp] - whether use gene expression data (default: True)
[use_methy] - whether use DNA methylation data (default: True)

One can run python run_DeepCDR.py -gpu_id 0 -use_mut True -use_gexp True -use_methy True to implement the DeepCDR regression model.

The trained model will be saved in data/checkpoint folder. The overall Pearson's correlation will be calculated.

DeepCDR classification model

python run_DeepCDR_classify.py -gpu_id [gpu_id] -use_mut [use_mut] -use_gexp [use_gexp] -use_methy [use_methy] 
[gpu_id] - set GPU card id (default:0)
[use_mut] - whether use genomic mutation data (default: True)
[use_gexp] - whether use gene expression data (default: True)
[use_methy] - whether use DNA methylation data (default: True)

One can run python run_DeepCDR_classify.py -gpu_id 0 -use_mut True -use_gexp True -use_methy True to implement the DeepCDR lassification model.

The trained model will be saved in data/checkpoint folder. The overall AUC and auPRn will be calculated.

External patient data

We also provided the external patient data downloaded from Firehose Broad GDAC. The patient data were preprocessed the same way as cell line data. The preprocessed data can be downloaded from our Server.

The preprocessed data contain three important files:

mut.csv - Genomic mutation profile of patients

expr.csv - Gene expression profile of patients

methy.csv - DNA methylation profile of patients

Note that the preprocessed patient data (csv format) have exact the same columns names as the three cell line data (genomic_mutation_34673_demap_features.csv, genomic_expression_561celllines_697genes_demap_features.csv, genomic_methylation_561celllines_808genes_demap_features.csv). The only difference is that the row name of patient data were replaced with patient unique barcode instead of cell line name.

Such format-consistent data is easy for external evaluation by repacing the cell line data with patient data.

Predicted missing data

As GDSC database only measured IC50 of part cell line and drug paires. We applied DeepCDR to predicted the missing IC50 values in GDSC database. The predicted results can be find at data/Missing_data_pre/records_pre_all.txt. Each record represents a predicted drug and cell line pair. The records were sorted by the predicted median IC50 values of a drug (see Fig.2E).

Contact

If you have any question regard our code or data, please do not hesitate to open a issue or directly contact me ([email protected])

Cite

If you used our work in your research, please consider citing our paper

Qiao Liu, Zhiqiang Hu, Rui Jiang, Mu Zhou, DeepCDR: a hybrid graph convolutional network for predicting cancer drug response, Bioinformatics, 2020, 36(2):i911-i918.

License

This project is licensed under the MIT License - see the LICENSE.md file for details

Owner
Qiao Liu
Qiao Liu
TensorFlow for Raspberry Pi

TensorFlow on Raspberry Pi It's officially supported! As of TensorFlow 1.9, Python wheels for TensorFlow are being officially supported. As such, this

Sam Abrahams 2.2k Dec 16, 2022
Open source Python implementation of the HDR+ photography pipeline

hdrplus-python Open source Python implementation of the HDR+ photography pipeline, originally developped by Google and presented in a 2016 article. Th

77 Jan 05, 2023
Learning Saliency Propagation for Semi-supervised Instance Segmentation

Learning Saliency Propagation for Semi-supervised Instance Segmentation PyTorch Implementation This repository contains: the PyTorch implementation of

Berkeley DeepDrive 68 Oct 18, 2022
Official repository for ABC-GAN

ABC-GAN The work represented in this repository is the result of a 14 week semesterthesis on photo-realistic image generation using generative adversa

IgorSusmelj 10 Jun 23, 2022
Telegram chatbot created with deep learning model (LSTM) and telebot library.

Telegram chatbot Telegram chatbot created with deep learning model (LSTM) and telebot library. Description This program will allow you to create very

1 Jan 04, 2022
HAR-stacked-residual-bidir-LSTMs - Deep stacked residual bidirectional LSTMs for HAR

HAR-stacked-residual-bidir-LSTM The project is based on this repository which is presented as a tutorial. It consists of Human Activity Recognition (H

Guillaume Chevalier 287 Dec 27, 2022
PyTorch framework, for reproducing experiments from the paper Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks

Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks. Code, based on the PyTorch framework, for reprodu

Asaf 3 Dec 27, 2022
A Python library for adversarial machine learning focusing on benchmarking adversarial robustness.

ARES This repository contains the code for ARES (Adversarial Robustness Evaluation for Safety), a Python library for adversarial machine learning rese

Tsinghua Machine Learning Group 377 Dec 20, 2022
A curated list of neural rendering resources.

Awesome-of-Neural-Rendering A curated list of neural rendering and related resources. Please feel free to pull requests or open an issue to add papers

Zhiwei ZHANG 43 Dec 09, 2022
Real-Time High-Resolution Background Matting

Real-Time High-Resolution Background Matting Official repository for the paper Real-Time High-Resolution Background Matting. Our model requires captur

Peter Lin 6.1k Jan 03, 2023
An implementation of "Optimal Textures: Fast and Robust Texture Synthesis and Style Transfer through Optimal Transport"

Optex An implementation of Optimal Textures: Fast and Robust Texture Synthesis and Style Transfer through Optimal Transport for TU Delft CS4240. You c

Hans Brouwer 33 Jan 05, 2023
StyleGAN of All Trades: Image Manipulation withOnly Pretrained StyleGAN

StyleGAN of All Trades: Image Manipulation withOnly Pretrained StyleGAN This is the PyTorch implementation of StyleGAN of All Trades: Image Manipulati

360 Dec 28, 2022
Topic Modelling for Humans

gensim – Topic Modelling in Python Gensim is a Python library for topic modelling, document indexing and similarity retrieval with large corpora. Targ

RARE Technologies 13.8k Jan 03, 2023
Simple reimplemetation experiments about FcaNet

FcaNet-CIFAR An implementation of the paper FcaNet: Frequency Channel Attention Networks on CIFAR10/CIFAR100 dataset. how to run Code: python Cifar.py

76 Feb 04, 2021
SpanNER: Named EntityRe-/Recognition as Span Prediction

SpanNER: Named EntityRe-/Recognition as Span Prediction Overview | Demo | Installation | Preprocessing | Prepare Models | Running | System Combination

NeuLab 104 Dec 17, 2022
Syllabic Quantity Patterns as Rhythmic Features for Latin Authorship Attribution

Syllabic Quantity Patterns as Rhythmic Features for Latin Authorship Attribution Abstract Within the Latin (and ancient Greek) production, it is well

4 Dec 03, 2022
Official Pytorch Implementation for Splicing ViT Features for Semantic Appearance Transfer presenting Splice

Splicing ViT Features for Semantic Appearance Transfer [Project Page] Splice is a method for semantic appearance transfer, as described in Splicing Vi

Omer Bar Tal 253 Jan 06, 2023
TAP: Text-Aware Pre-training for Text-VQA and Text-Caption, CVPR 2021 (Oral)

TAP: Text-Aware Pre-training TAP: Text-Aware Pre-training for Text-VQA and Text-Caption by Zhengyuan Yang, Yijuan Lu, Jianfeng Wang, Xi Yin, Dinei Flo

Microsoft 61 Nov 14, 2022
A PyTorch Lightning Callback for pushing models to the Hugging Face Hub 🤗⚡️

hf-hub-lightning A callback for pushing lightning models to the Hugging Face Hub. Note: I made this package for myself, mostly...if folks seem to be i

Nathan Raw 27 Dec 14, 2022
Repository for Driving Style Recognition algorithms for Autonomous Vehicles

Driving Style Recognition Using Interval Type-2 Fuzzy Inference System and Multiple Experts Decision Making Created by Iago Pachêco Gomes at USP - ICM

Iago Gomes 9 Nov 28, 2022