An Insurance firm providing tour insurance is facing higher claim frequency

Overview

Insurance-Claim

An Insurance firm providing tour insurance is facing higher claim frequency. Data is collected from the past few years. Made a model which predicts the claim status using CART, RF & ANN and compare the models' performances in train and test sets.

EDA

Dataset has 10 variables and 3000 instances. 2 variables are float type and 2 are integer type. There are 6 object-type variables which need to be converted to numeric form. From the above data, it is evident that no null values are present in the data. The shape of the dataset is 3000,10.

Using the describe() function in Python, a summary of all the parameters can be obtained. Asia seems to have the most insurance claims. After the removal of the duplicated data, the outliers were calculated. The outliers were not treated since all numeric values have them and can be taken care of in random forest classification.

Pairplot was performed to check continuous variables Heatmap was performed to check correlation

Decision tree in Python can take only numerical / categorical colums. It cannot take string / object types. The feature statement loops through each column and checks if the column type is object then converts those columns into categorical with each distinct value becoming a category.

Split the data into test and train, to build classification model CART, Random Forest, Artificial Neural Network.

Built a decision tree and found the variable importance and predicted the test data. Added tuning parameters to regulise the decision tree and found the variable importance again. Found the prediting probabilities

Random Forest

Treated the model for outliers Predicted test and train data with RF model

MLP Classifier

Predicted using the training and testing data

ROC_AUC

Checked the performance of Predictions on Train and Test sets using Accuracy, Confusion Matrix, Plot ROC curve and get ROC_AUC score for each model.

Analysis

Looking at the model, more data will help us understand and predict models better. Streamlining online experiences benefitted customers, leading to an increase in conversions, which subsequently raised profits. As per the data 90% of insurance is done by online channel. Other interesting fact, is almost all the offline business has a claimed associated with it. Need to train the JZI agency resources to pick up sales as they are in bottom, need to run promotional marketing campaign or evaluate if we need to tie up with alternate agency. Also based on the model we are getting 80% accuracy, so we need customer books airline tickets or plans, cross sell the insurance based on the claim data pattern. Other interesting fact is more sales happen via Agency than Airlines and the trend shows the claim are processed more at Airline. So, we may need to dive deeper to understand the workflow. Key performance indicators (KPI) will increase customer satisfaction which in fact will give more revenue, combat fraud transactions, deploy measures to avoid fraudulent transactions at earliest as well as optimize claim-recovery method. It will also reduce the claim handling costs

Owner
MSBA Graduate Student at University of Illinois at Chicago | Passionate Analyst | SQL | Python | R programming | Tableau | Haddop
A simple PID tuner and simulator.

PIDtuner-V0.1 PlantPy PID tuner version 0.1 Features Supports first order and ramp process models. Supports Proportional action on PV or error or a sp

3 Jun 23, 2022
ARA Records Ansible and makes it easier to understand and troubleshoot.

ARA Records Ansible ARA Records Ansible and makes it easier to understand and troubleshoot. It's another recursive acronym. What it does Simple to ins

Community managed Ansible repositories 1.6k Dec 25, 2022
An Airflow operator to call the main function from the dbt-core Python package

airflow-dbt-python An Airflow operator to call the main function from the dbt-core Python package Motivation Airflow running in a managed environment

Tomás Farías Santana 93 Jan 08, 2023
rTorrent Crash Prevention

rTorrent Disk Checker This program is capable of the following when: - a torrent is added by any program (autodl-irssi, RSS Downloader et

16 Dec 14, 2022
A repository for all ZenML projects that are specific production use-cases.

ZenFiles Original Image source: https://www.goodfon.com/wallpaper/x-files-sekretnye-materialy.html And naturally, all credits to the awesome X-Files s

ZenML 66 Jan 06, 2023
Python Example Project Structure

Python Example Project Structure Example of statuses that can be in readme: Visit my docs for the full documentation, examples and guides. With this p

1 Oct 31, 2021
Python pyside2 kütüphanesi ile oluşturduğum drone için yer kontrol istasyonu yazılımı.

Ground Control Station (Yer Kontrol İstasyonu) Teknofest yarışmasında yerlilik kısmında Yer Kontrol İstasyonu yazılımı seçeneği bulunuyordu. Bu yüzden

Emirhan Bülbül 4 May 14, 2022
Statistics Calculator module for all types of Stats calculations.

Statistics-Calculator This Calculator user the formulas and methods to find the statistical values listed. Statistics Calculator module for all types

2 May 29, 2022
Usando Multi Player Perceptron e Regressão Logistica para classificação de SPAM

Relatório dos procedimentos executados e resultados obtidos. Objetivos Treinar um modelo para classificação de SPAM usando o dataset train_data. Class

André Mediote 1 Feb 02, 2022
Functions to analyze Cell-ID single-cell cytometry data using python language.

PyCellID (building...) Functions to analyze Cell-ID single-cell cytometry data using python language. Dependecies for this project. attrs(=21.1.0) fo

0 Dec 22, 2021
Encode stuff with ducks!

Duckify Encoder Usage Download main.py and run it. main.py has an encoded version in encoded_main.py.txt. As A Module Download the duckify folder (or

Jeremiah 2 Nov 15, 2021
The fastest way to copy to (not from) high speed flash storage.

FastestCopy The fastest way to copy to (not from) high speed flash storage. This is about 3-6x faster than file copy on explorer.exe to usb flash driv

Derek Frombach 0 Nov 03, 2021
Automated Content Feed Curator

Gathers posts from content feeds, filters, formats, delivers to you.

Alper S. Soylu 2 Jan 22, 2022
This repo contains scripts that add functionality to xbar.

xbar-custom-plugins This repo contains scripts that add functionality to xbar. Usage You have to add scripts to xbar plugin folder. If you don't find

osman uygar 1 Jan 10, 2022
A Classroom Engagement Platform

Project Introduction This is project introduction Setup Setting up Postgres This is the most tricky part when setting up the application. You will nee

Santosh Kumar Patro 1 Nov 18, 2021
The purpose of this tool is to check RDP capabilities of a user on specific targets.

RDPChecker The purpose of this tool is to check RDP capabilities of a user on specific targets. Programming concept was taken from RDPassSpray and thu

Hypnoze57 57 Aug 04, 2022
This module is for finding the execution time of a whole python program

exetime 3.8 This module is for finding the execution time of a whole program How to install $ pip install exetime Contents: General Information Instru

Saikat Das 4 Oct 18, 2021
SEH-Helper - Binary Ninja plugin for exploring Structured Exception Handlers

SEH Helper Author: EliseZeroTwo A Binary Ninja helper for exploring structured e

Elise 74 Dec 26, 2022
A python script made for personal use to monitor for sports card restocks on target.com since they are sold out often

TargetProductMonitor A python script made for personal use to monitor for sports card resocks on target.com since they are sold out often. When a rest

Bryan Lorden 2 Jul 31, 2022
Script to automate the scanning of "old printed photos"

photoscanner Script to automate the scanning of "old printed photos" Just run: ./scan_photos.py The script is prepared to be run by fades. Otherw

Facundo Batista 2 Jan 21, 2022