Learning to compose soft prompts for compositional zero-shot learning.

Overview

Compositional Soft Prompting (CSP)

Compositional soft prompting (CSP), a parameter-efficient learning technique to improve the zero-shot compositionality of large-scale pretrained vision-language models (VLMs) without the overhead of fine-tuning the entire model.

Reference Paper: Learning to Compose Soft Prompts for Compositional Zero-Shot Learning

alt text

If you find CSP helpful, please cite our paper:

@article{csp2022,
  author = {Nayak, Nihal V. and Yu, Peilin and Bach, Stephen H.},
  title = {Learning to Compose Soft Prompts for Compositional Zero-Shot Learning},
  volume = {arXiv:2204.03574 [cs.LG]},
  year = {2022},
}

Setup

conda create --name clip python=3.7
conda activate clip
pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113
pip3 install ftfy regex tqdm scipy pandas
pip3 install git+https://github.com/openai/CLIP.git

Alternatively, you can use pip install -r requirements.txt to install all the dependencies.

Download Dataset

We experiment with three datasets: MIT-States, UT-Zappos, and C-GQA.

sh download_data.sh

If you already have setup the datasets, you can use symlink and ensure the following paths exist: data/<dataset> where <datasets> = {'mit-states', 'ut-zappos', 'cgqa'}.

Training

python -u train.py \
  --dataset mit-states \
  --model ViT-L/14 \
  --experiment_name csp \
  --seed 0 \
  --epochs 20 \
  --lr 5e-05 \
  --attr_dropout 0.3 \
  --weight_decay 0.00001 \
  --train_batch_size 64 \
  --gradient_accumulation_steps 2 \
  --context_length 8 \
  --save_path data/model/mit-states/sample_model \
  --save_every_n 1

You can replace --dataset with {mit-states, ut-zappos, cgqa}. The best hyperparameters are included in the paper.

Evaluation

We evaluate our models in two settings: closed-world and open-world.

Closed-World Evaluation

python -u evaluate.py \
  --dataset mit-states \
  --soft_embeddings data/model/mit-states/sample_model/soft_embeddings_epoch_20.pt \
  --context_length 16 \
  --text_encoder_batch_size 36 \
  --eval_batch_size 16 \
  --experiment_name csp

Open-World Evaluation

For our open-world evaluation, we compute the feasbility calibration and then evaluate on the dataset.

Feasibility Calibration

We use GloVe embeddings to compute the similarities between objects and attributes. Download the GloVe embeddings in the data directory:

cd data
wget https://nlp.stanford.edu/data/glove.6B.zip

Move glove.6B.300d.txt into data/glove.6B.300d.txt.

To compute feasibility calibration for each dataset, run the following command:

python -u datasets/feasibility.py --dataset mit-states

The feasibility similarities are saved at data/feasibility_<dataset>.pt.

Evaluation

The open-world evaluation with the thresholds (feasibility calibration).

python -u evaluate.py \
  --dataset mit-states \
  --soft_embeddings data/model/mit-states/sample_model/soft_embeddings_epoch_5.pt \
  --context_length 16 \
  --text_encoder_batch_size 36 \
  --eval_batch_size 256 \
  --experiment_name czsl \
  --threshold <threshold> \
  --open_world

If <threshold> is None, then the model picks the best threshold on the validation set. We use the following thresholds:

Dataset Threshold
mit-states 0.4069159426
ut-zappos 0.5299109123
cgqa 0.49937106273612186

Note: We use 256GB of cpu memory to evaluate cgqa.

Generalization to Higher-Order Compositions

Evaluate the trained CSP vocabulary on the new AAO-MIT-States dataset.

python aao/evaluate_att_att_obj.py \
  --experiment_name csp \
  --soft_embeddings data/model/mit-states/sample_model/soft_embeddings_epoch_20.pt

We thank Andrew Delworth and Elise Carman for helping us annotate this dataset.

Generalization to Mixed Pretrained and Fine-Tuned Vocabulary

Ablation experiment to train and evaluate CSP with reduced fine-tuned vocabulary. We run experiment on the ut-zappos dataset.

Training

python -u mix/mix_train.py \
  --dataset ut-zappos \
  --model ViT-L/14 \
  --experiment_name mix_csp \
  --seed 0 \
  --epochs 20 \
  --lr 5e-04 \
  --attr_dropout 0.2 \
  --weight_decay 0.00001 \
  --train_batch_size 64 \
  --context_length 8 \
  --save_path data/model/ut-zappos/mix_train_model_0.25 \
  --save_every_n 5 \
  --attr_keep_ratio 0.25 \
  --gradient_accumulation_steps 2

We change the --attr_keep_ratio to {0.25, 0.50, 0.75}.

Evaluation

python -u mix/evaluate_mix_train.py \
  --dataset ut-zappos \
  --soft_embeddings data/model/ut-zappos/mix_train_model_0.25/soft_embeddings.pt \
  --context_length 16 \
  --text_encoder_batch_size 36 \
  --eval_batch_size 256 \
  --experiment_name csp

Credits

The project uses openly available model, code, and datasets. Please see the credits.

Owner
Bats Research
Bats Research
✨ Powerfull & Universal Link Bypasser ✨

✨ Powerfull & Universal Link Bypasser ✨

Vodkarm06 4 Jun 03, 2022
A Safer PoC for CVE-2022-22965 (Spring4Shell)

Safer_PoC_CVE-2022-22965 A Safer PoC for CVE-2022-22965 (Spring4Shell) Functionality Creates a file called CVE_2022-22965_exploited.txt in the tomcat

Colin Cowie 46 Nov 12, 2022
This is a Cryptographied Password Manager, a tool for storing Passwords in a Secure way

Cryptographied Password Manager This is a Cryptographied Password Manager, a tool for storing Passwords in a Secure way without using external Service

Francesco 3 Nov 23, 2022
Script Crack Facebook Premium 🚶‍♂

prem Script Crack Facebook Premium 🚶‍♂ Install Script $ pkg update && pkg update $ termux-setup-storage $ pkg install git $ pkg install python $ pip

Yumasaa 1 Dec 03, 2021
Spring-0day/CVE-2022-22965

CVE-2022-22965 Spring Framework/CVE-2022-22965 Vulnerability ID: CVE-2022-22965/CNVD-2022-23942/QVD-2022-1691 Reproduce the vulnerability docker pull

iak 4 Apr 05, 2022
Scan your logs for CVE-2021-44228 related activity and report the attackers

jndiRep - CVE-2021-44228 Basically a bad grep on even worse drugs. search for malicious strings decode payloads print results to stdout or file report

js-on 2 Nov 24, 2022
Security-TXT is a python package for retrieving, parsing and manipulating security.txt files.

Security-TXT is a python package for retrieving, parsing and manipulating security.txt files.

Frank 3 Feb 07, 2022
A terminal based web shell controller

shell-hack Tribute to Chinese ant sword; A Powerful terminal based webshell controller; Usage : Usage : python3 shell-hack.py --url [URL] --w

s1mple 10 Dec 28, 2021
PreviewGram is for users that wants get a more private experience with the Telegram's Channel.

PreviewGram is for users that wants get a more private experience with the Telegram's Channel.

1 Sep 25, 2022
windows电脑查看全部连接过的WiFi密码

python WIFI历史密码查看器 WIFI密码查看器 原理 win+R,输入cmd打开命令行窗口 #这个命令可以列出你所有连接过的wifi netsh wlan show profiles #替换你要查找的WiFi名称,就可以显示出这个wifi的所有信息,包括密码 netsh wlan show

GMYXDS 15 Dec 22, 2022
A compact version of EDI-Vetter, which uses the TLS output to quickly vet transit signals.

A compact version of EDI-Vetter, which uses the TLS output to quickly vet transit signals. All your favorite hits in a simplified format.

Jon Zink 2 Aug 03, 2022
A GitHub action for organizations that enables advanced security code scanning on all new repos

Advanced-Security-Enforcer What this repository does This code is for an active GitHub Action written in Python to check (on a schedule) for new repos

Zack Koppert 30 May 17, 2022
Um keylogger que se disfarça de um app que tira print da tela.

Keylogger_ Um keylogger que se disfarça de um app que tira print da tela. Este programa captura o print da tela e salva ,normalmente, na pasta Picture

Marcus Vinícius Ribeiro Andrade 1 Dec 03, 2021
Exploiting CVE-2021-42278 and CVE-2021-42287 to impersonate DA from standard domain user

About Exploiting CVE-2021-42278 and CVE-2021-42287 to impersonate DA from standard domain user Changed from sam-the-admin. Usage SAM THE ADMIN CVE-202

Evi1cg 500 Jan 06, 2023
The self-hostable proxy tunnel

TTUN Server The self-hostable proxy tunnel. Running Running: docker run -e TUNNEL_DOMAIN=Your tunnel domain -e SECURE=True if using SSL ghcr.io/to

Tom van der Lee 2 Jan 11, 2022
BloodyAD is an Active Directory Privilege Escalation Framework

BloodyAD Framework BloodyAD is an Active Directory Privilege Escalation Framework, it can be used manually using bloodyAD.py or automatically by combi

757 Jan 07, 2023
CamRaptor is a tool that exploits several vulnerabilities in popular DVR cameras to obtain device credentials.

CamRaptor is a tool that exploits several vulnerabilities in popular DVR cameras to obtain device credentials.

EntySec 118 Dec 24, 2022
:closed_lock_with_key: multi factor authentication system (2FA, MFA, OTP Server)

privacyIDEA privacyIDEA is an open solution for strong two-factor authentication like OTP tokens, SMS, smartphones or SSH keys. Using privacyIDEA you

1.3k Jan 03, 2023
This is a simple Port Flooder written in Python 3.

This is a simple Port Flooder written in Python 3. Use this tool to quickly stress test your network devices and measure your router's or server's load.

Júlio Carneiro 4 Feb 20, 2022
Repo for The Crown: Exploratory Analysis of Nim Malware DEF CON 615 talk

Repo for "The Crown: Exploratory Analysis of Nim Malware" DEF CON 615 talk

HuskyHacks 43 Dec 03, 2022