Lane follower: Lane-detector (OpenCV) + Object-detector (YOLO5) + CAN-bus

Overview

Lane Follower

This code is for the lane follower, including perception and control, as shown below.

Structure

Environment

  1. Hardware
    • Industrial Camera
    • Intel-NUC(10FNK)
  2. Software
    • Ubuntu18.04
    • Python3.6
    • OpenCV4.2
    • PyTorch1.8.1

    See environment.txt for details.

How to use

A. Offline Testing

The code supports the offline testing, which takes the offline video as input and output the demo video.

python offline_test.py

B. OnLine Testing

The code also supports the online testing, which takes the real-time video streaming from the industrial camera as input and controls the vehicle.

python online_test.py

C. Demo

You can find the offline testing video and the corresponding demo video here [n25o].

demo

Details

Detailed structure

detailed-structure

Code Info

  • offline_test.py --- Offline testing

  • online_test.py --- Online testing

  • basic_function --- Some Basic Function

    • show_img(name, img): Show the image
    • find_files(directory, pattern): Method to find target files in one directory, including subdirectory
    • get_M_Minv(): Get Perspective Transform
    • draw_area(img_origin, img_line, Minv, left_fit, right_fit): Draw the road area in the image
    • draw_demo(img_result, img_bin, img_canny, img_line, img_line_warp, img_bev_result, curvature, distance_from_center, steer): Generate the Demo image
  • lib_camera --- Class for the industrial camera

    • open(): Open the camera
    • grab(): Grab an image from the camera
    • close(): Close the camera
  • mvsdk --- Official lib for the industrial camera

  • lib_can --- Class for the CAN

    • OpenDevice(): Open the CAN device
    • InitCAN(can_idx=0): Init the CAN
    • StartCan(can_idx=0): Start the CAN
    • Send(can_idx, id, frame_len, data): Send messages to CAN
    • Listen(can_idx, id, try_cnt=10): Receive messages from CAN
    • CloseDevice(): Close the CAN device
  • lib_LaneDetector --- Class for the lane detector

    • detect_line(img_input, steer, memory, debug=False): Main Function
    • pre_process(img, debug=False): Image Preprocessing
    • find_line(img, memory, debug=False): Detect the lane using Sliding Windows Methods
    • calculate_curv_and_pos(img_line, left_fit, right_fit): Calculate the curvature & distance from the center
  • lib_ObjectDetector --- Class for the traffic object detector based on YOLO5

    • load_model(): Load Yolo5 model from pytorch hub
    • detect(frame, img_area): Predict and analyze using yolo5
    • class_to_label(idx): Return the corresponding string label for a given label value
    • plot_detections(results, frame): Takes a frame and its results as input, and plots the bounding boxes and label on to the frame
  • lib_vehicle --- Class for the vehicle model and vehicle control

    • steer_cal(curvature, dist_from_center): Calculate the steer according to the curvature of the lane and the distance form the center
    • steer_ctrl(): Control the steer by sending the signal via CAN
    • steer_get(): Get the real steer of the vehicle via the CAN
  • libcontrolcan.so --- DLL for the CAN device

  • libMVSDK.so --- DLL for the industrial camera

Owner
Siqi Fan
Graduate Student @ IA, CAS (2019 ~ now) B.E. @ Shanghai Jiao Tong University (SJTU,2015~2019)
Siqi Fan
TensorFlow implementation of Elastic Weight Consolidation

Elastic weight consolidation Introduction A TensorFlow implementation of elastic weight consolidation as presented in Overcoming catastrophic forgetti

James Stokes 67 Oct 11, 2022
Final report with code for KAIST Course KSE 801.

Orthogonal collocation is a method for the numerical solution of partial differential equations

Chuanbo HUA 4 Apr 06, 2022
商品推荐系统

商品top50推荐系统 问题建模 本项目的数据集给出了15万左右的用户以及12万左右的商品, 以及对应的经过脱敏处理的用户特征和经过预处理的商品特征,旨在为用户推荐50个其可能购买的商品。 推荐系统架构方案 本项目采用传统的召回+排序的方案。

107 Dec 29, 2022
[CVPR 2021] Released code for Counterfactual Zero-Shot and Open-Set Visual Recognition

Counterfactual Zero-Shot and Open-Set Visual Recognition This project provides implementations for our CVPR 2021 paper Counterfactual Zero-S

144 Dec 24, 2022
Non-Official Pytorch implementation of "Face Identity Disentanglement via Latent Space Mapping" https://arxiv.org/abs/2005.07728 Using StyleGAN2 instead of StyleGAN

Face Identity Disentanglement via Latent Space Mapping - Implement in pytorch with StyleGAN 2 Description Pytorch implementation of the paper Face Ide

Daniel Roich 58 Dec 24, 2022
This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in the time series forecasting research space.

TSForecasting This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in the tim

Rakshitha Godahewa 80 Dec 30, 2022
Reimplementation of the paper `Human Attention Maps for Text Classification: Do Humans and Neural Networks Focus on the Same Words? (ACL2020)`

Human Attention for Text Classification Re-implementation of the paper Human Attention Maps for Text Classification: Do Humans and Neural Networks Foc

Shunsuke KITADA 15 Dec 13, 2021
Code for the tech report Toward Training at ImageNet Scale with Differential Privacy

Differentially private Imagenet training Code for the tech report Toward Training at ImageNet Scale with Differential Privacy by Alexey Kurakin, Steve

Google Research 29 Nov 03, 2022
PyTorch implementation of 'Gen-LaneNet: a generalized and scalable approach for 3D lane detection'

(pytorch) Gen-LaneNet: a generalized and scalable approach for 3D lane detection Introduction This is a pytorch implementation of Gen-LaneNet, which p

Yuliang Guo 233 Jan 06, 2023
Enhancing Column Generation by a Machine-Learning-BasedPricing Heuristic for Graph Coloring

Enhancing Column Generation by a Machine-Learning-BasedPricing Heuristic for Graph Coloring (to appear at AAAI 2022) We propose a machine-learning-bas

YunzhuangS 2 May 02, 2022
Aws-machine-learning-university-accelerated-tab - Machine Learning University: Accelerated Tabular Data Class

Machine Learning University: Accelerated Tabular Data Class This repository contains slides, notebooks, and datasets for the Machine Learning Universi

AWS Samples 916 Dec 23, 2022
Fast Neural Style for Image Style Transform by Pytorch

FastNeuralStyle by Pytorch Fast Neural Style for Image Style Transform by Pytorch This is famous Fast Neural Style of Paper Perceptual Losses for Real

Bengxy 81 Sep 03, 2022
Official repo for AutoInt: Automatic Integration for Fast Neural Volume Rendering in CVPR 2021

AutoInt: Automatic Integration for Fast Neural Volume Rendering CVPR 2021 Project Page | Video | Paper PyTorch implementation of automatic integration

Stanford Computational Imaging Lab 149 Dec 22, 2022
POPPY (Physical Optics Propagation in Python) is a Python package that simulates physical optical propagation including diffraction

POPPY: Physical Optics Propagation in Python POPPY (Physical Optics Propagation in Python) is a Python package that simulates physical optical propaga

Space Telescope Science Institute 132 Dec 15, 2022
Deep Sea Treasure Environment for Multi-Objective Optimization Research

DeepSeaTreasure Environment Installation In order to get started with this environment, you can install it using the following command: python3 -m pip

imec IDLab 6 Nov 14, 2022
CVNets: A library for training computer vision networks

CVNets: A library for training computer vision networks This repository contains the source code for training computer vision models. Specifically, it

Apple 1.1k Jan 03, 2023
Repository for the paper "PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation", CVPR 2021.

PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation Code repository for the paper: PoseAug: A Differentiable Pose Augme

Pyjcsx 328 Dec 17, 2022
3D AffordanceNet is a 3D point cloud benchmark consisting of 23k shapes from 23 semantic object categories, annotated with 56k affordance annotations and covering 18 visual affordance categories.

3D AffordanceNet This repository is the official experiment implementation of 3D AffordanceNet benchmark. 3D AffordanceNet is a 3D point cloud benchma

49 Dec 01, 2022
A collection of semantic image segmentation models implemented in TensorFlow

A collection of semantic image segmentation models implemented in TensorFlow. Contains data-loaders for the generic and medical benchmark datasets.

bobby 16 Dec 06, 2019
Replication Code for "Self-Supervised Bug Detection and Repair" NeurIPS 2021

Self-Supervised Bug Detection and Repair This is the reference code to replicate the research in Self-Supervised Bug Detection and Repair in NeurIPS 2

Microsoft 85 Dec 24, 2022