This is the code related to "Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation" (ICCV 2021).

Related tags

Deep LearningDsCML
Overview

Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation

This is the code related to "Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation" (ICCV 2021).

1. Paper

Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation
IEEE International Conference on Computer Vision (ICCV 2021)

If you find it helpful to your research, please cite as follows:

@inproceedings{peng2021sparse,
  title={Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation},
  author={Peng, Duo and Lei, Yinjie and Li, Wen and Zhang, Pingping and Guo, Yulan},
  booktitle={Proceedings of the International Conference on Computer Vision (ICCV)},
  year={2021},
  publisher={IEEE}
}

2. Preparation

You can follow the next steps to install the requairmented environment. This code is mainly modified from xMUDA, you can also refer to its README if the installation isn't going well.

2.1 Setup a Conda environment:

First, you are recommended to create a new Conda environment named nuscenes.

conda create --name nuscenes python=3.7

You can enable the virtual environment using:

conda activate nuscenes 

To deactivate the virtual environment, use:

source deactivate

2.2 Install nuscenes-devkit:

Download the devkit to your computer, decompress and enter it.

Add the python-sdk directory to your PYTHONPATH environmental variable, by adding the following to your ~/.bashrc:

export PYTHONPATH="${PYTHONPATH}:$HOME/nuscenes-devkit/python-sdk"

Using cmd (make sure the environment "nuscenes" is activated) to install the base environment:

pip install -r setup/requirements.txt

Setup environment variable:

export NUSCENES="/data/sets/nuscenes"

Using the cmd to finally install it:

pip install nuscenes-devkit

After the above steps, the devikit is installed, for any question you can refer to devikit_installation_help

If you meet the error with "pycocotools", you can try following steps:

(1) Install Cython in your environment:

sudo apt-get installl Cython
pip install cython

(2) Download the cocoapi to your computer, decompress and enter it.

(3) Using cmd to enter the path under "PythonAPI", type:

make

(4) Type:

pip install pycocotools

2.3 Install SparseConveNet:

Download the SparseConveNet to your computer, decompress, enter and develop it:

cd SparseConvNet/
bash develop.sh

3. Datasets Preparation

For Dataset preprocessing, the code and steps are highly borrowed from xMUDA, you can see more preprocessing details from this Link. We summarize the preprocessing as follows:

3.1 NuScenes

Download Nuscenes from NuScenes website and extract it.

Before training, you need to perform preprocessing to generate the data first. Please edit the script DsCML/data/nuscenes/preprocess.py as follows and then run it.

root_dir should point to the root directory of the NuScenes dataset

out_dir should point to the desired output directory to store the pickle files

3.2 A2D2

Download the A2D2 Semantic Segmentation dataset and Sensor Configuration from the Audi website

Similar to NuScenes preprocessing, please save all points that project into the front camera image as well as the segmentation labels to a pickle file.

Please edit the script DsCML/data/a2d2/preprocess.py as follows and then run it.

root_dir should point to the root directory of the A2D2 dataset

out_dir should point to the desired output directory to store the undistorted images and pickle files.

It should be set differently than the root_dir to prevent overwriting of images.

3.3 SemanticKITTI

Download the files from the SemanticKITTI website and additionally the color data from the Kitti Odometry website. Extract everything into the same folder.

Please edit the script DsCML/data/semantic_kitti/preprocess.py as follows and then run it.

root_dir should point to the root directory of the SemanticKITTI dataset out_dir should point to the desired output directory to store the pickle files

4. Usage

You can training the DsCML by using cmd or IDE such as Pycharm.

python DsCML/train_DsCML.py --cfg=../configs/nuscenes/day_night/xmuda.yaml

The output will be written to /home/<user>/workspace by default. You can change the path OUTPUT_DIR in the config file in (e.g. configs/nuscenes/day_night/xmuda.yaml)

You can start the trainings on the other UDA scenarios (USA/Singapore and A2D2/SemanticKITTI):

python DsCML/train_DsCML.py --cfg=../configs/nuscenes/usa_singapore/xmuda.yaml
python DsCML/train_DsCML.py --cfg=../configs/a2d2_semantic_kitti/xmuda.yaml

5. Results

We present several qualitative results reported in our paper.

Update Status

The code of CMAL is updated. (2021-10-04)

A comprehensive list of published machine learning applications to cosmology

ml-in-cosmology This github attempts to maintain a comprehensive list of published machine learning applications to cosmology, organized by subject ma

George Stein 290 Dec 29, 2022
Implementing yolov4 target detection and tracking based on nao robot

Implementing yolov4 target detection and tracking based on nao robot

6 Apr 19, 2022
A Pytorch implementation of "LegoNet: Efficient Convolutional Neural Networks with Lego Filters" (ICML 2019).

LegoNet This code is the implementation of ICML2019 paper LegoNet: Efficient Convolutional Neural Networks with Lego Filters Run python train.py You c

YangZhaohui 140 Sep 26, 2022
A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron.

The GatedTabTransformer. A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron. C

Radi Cho 60 Dec 15, 2022
A PyTorch Implementation of Single Shot MultiBox Detector

SSD: Single Shot MultiBox Object Detector, in PyTorch A PyTorch implementation of Single Shot MultiBox Detector from the 2016 paper by Wei Liu, Dragom

Max deGroot 4.8k Jan 07, 2023
Source code for Fixed-Point GAN for Cloud Detection

FCD: Fixed-Point GAN for Cloud Detection PyTorch source code of Nyborg & Assent (2020). Abstract The detection of clouds in satellite images is an ess

Joachim Nyborg 8 Dec 22, 2022
Fight Recognition from Still Images in the Wild @ WACVW2022, Real-world Surveillance Workshop

Fight Detection from Still Images in the Wild Detecting fights from still images is an important task required to limit the distribution of social med

Şeymanur Aktı 10 Nov 09, 2022
I created My own Virtual Artificial Intelligence named genesis, He can assist with my Tasks and also perform some analysis,,

Virtual-Artificial-Intelligence-genesis- I created My own Virtual Artificial Intelligence named genesis, He can assist with my Tasks and also perform

AKASH M 1 Nov 05, 2021
Pytorch implementation for reproducing StackGAN_v2 results in the paper StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks

StackGAN-v2 StackGAN-v1: Tensorflow implementation StackGAN-v1: Pytorch implementation Inception score evaluation Pytorch implementation for reproduci

Han Zhang 809 Dec 16, 2022
NeuroFind - A solution to the to the Task given by the Oberseminar of Messtechnik Institute of TU Dresden in 2021

NeuroFind A solution to the to the Task given by the Oberseminar of Messtechnik

1 Jan 20, 2022
GuideDog is an AI/ML-based mobile app designed to assist the lives of the visually impaired, 100% voice-controlled

Guidedog Authors: Kyuhee Jo, Steven Gunarso, Jacky Wang, Raghav Sharma GuideDog is an AI/ML-based mobile app designed to assist the lives of the visua

Kyuhee Jo 5 Nov 24, 2021
Rlmm blender toolkit - A set of tools to streamline level generation in UDK straight from Blender

rlmm_blender_toolkit A set of tools to streamline level generation in UDK straig

Rocket League Mapmaking 0 Jan 15, 2022
Image-Adaptive YOLO for Object Detection in Adverse Weather Conditions

Image-Adaptive YOLO for Object Detection in Adverse Weather Conditions Accepted by AAAI 2022 [arxiv] Wenyu Liu, Gaofeng Ren, Runsheng Yu, Shi Guo, Jia

liuwenyu 245 Dec 16, 2022
Multi-tool reverse engineering collaboration solution.

CollaRE v0.3 Intorduction CollareRE is a tool for collaborative reverse engineering that aims to allow teams that do need to use more then one tool du

105 Nov 27, 2022
Cross-media Structured Common Space for Multimedia Event Extraction (ACL2020)

Cross-media Structured Common Space for Multimedia Event Extraction Table of Contents Overview Requirements Data Quickstart Citation Overview The code

Manling Li 49 Nov 21, 2022
[ICCV'21] PlaneTR: Structure-Guided Transformers for 3D Plane Recovery

PlaneTR: Structure-Guided Transformers for 3D Plane Recovery This is the official implementation of our ICCV 2021 paper News There maybe some bugs in

73 Nov 30, 2022
Voila - Voilà turns Jupyter notebooks into standalone web applications

Rendering of live Jupyter notebooks with interactive widgets. Introduction Voilà turns Jupyter notebooks into standalone web applications. Unlike the

Voilà Dashboards 4.5k Jan 03, 2023
PyTorch Implementation of ECCV 2020 Spotlight TuiGAN: Learning Versatile Image-to-Image Translation with Two Unpaired Images

TuiGAN-PyTorch Official PyTorch Implementation of "TuiGAN: Learning Versatile Image-to-Image Translation with Two Unpaired Images" (ECCV 2020 Spotligh

181 Dec 09, 2022
Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals

LapDepth-release This repository is a Pytorch implementation of the paper "Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals" M

Minsoo Song 205 Dec 30, 2022