Official Implementation of DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation

Related tags

Deep LearningDAFormer
Overview

DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation

[Arxiv] [Paper]

As acquiring pixel-wise annotations of real-world images for semantic segmentation is a costly process, a model can instead be trained with more accessible synthetic data and adapted to real images without requiring their annotations. This process is studied in Unsupervised Domain Adaptation (UDA).

Even though a large number of methods propose new UDA strategies, they are mostly based on outdated network architectures. In this work, we particularly study the influence of the network architecture on UDA performance and propose DAFormer, a network architecture tailored for UDA. It consists of a Transformer encoder and a multi-level context-aware feature fusion decoder.

DAFormer is enabled by three simple but crucial training strategies to stabilize the training and to avoid overfitting the source domain: While the Rare Class Sampling on the source domain improves the quality of pseudo-labels by mitigating the confirmation bias of self-training towards common classes, the Thing-Class ImageNet Feature Distance and a Learning Rate Warmup promote feature transfer from ImageNet pretraining.

DAFormer significantly improves the state-of-the-art performance by 10.8 mIoU for GTA→Cityscapes and by 5.4 mIoU for Synthia→Cityscapes and enables learning even difficult classes such as train, bus, and truck well.

UDA over time

The strengths of DAFormer, compared to the previous state-of-the-art UDA method ProDA, can also be observed in qualitative examples from the Cityscapes validation set.

Demo Color Palette

For more information on DAFormer, please check our [Paper].

If you find this project useful in your research, please consider citing:

@article{hoyer2021daformer,
  title={DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation},
  author={Hoyer, Lukas and Dai, Dengxin and Van Gool, Luc},
  journal={arXiv preprint arXiv:2111.14887},
  year={2021}
}

Setup Environment

For this project, we used python 3.8.5. We recommend setting up a new virtual environment:

python -m venv ~/venv/daformer
source ~/venv/daformer/bin/activate

In that environment, the requirements can be installed with:

pip install -r requirements.txt -f https://download.pytorch.org/whl/torch_stable.html
pip install mmcv-full==1.3.7  # requires the other packages to be installed first

Further, please download the MiT weights and a pretrained DAFormer using the following script. If problems occur with the automatic download, please follow the instructions for a manual download within the script.

sh tools/download_checkpoints.sh

All experiments were executed on a NVIDIA RTX 2080 Ti.

Inference Demo

Already as this point, the provided DAFormer model (downloaded by tools/download_checkpoints.sh) can be applied to a demo image:

python -m demo.image_demo demo/demo.png work_dirs/211108_1622_gta2cs_daformer_s0_7f24c/211108_1622_gta2cs_daformer_s0_7f24c.json work_dirs/211108_1622_gta2cs_daformer_s0_7f24c/latest.pth

When judging the predictions, please keep in mind that DAFormer had no access to real-world labels during the training.

Setup Datasets

Cityscapes: Please, download leftImg8bit_trainvaltest.zip and gt_trainvaltest.zip from here and extract them to data/cityscapes.

GTA: Please, download all image and label packages from here and extract them to data/gta.

Synthia: Please, download SYNTHIA-RAND-CITYSCAPES from here and extract it to data/synthia.

The final folder structure should look like this:

DAFormer
├── ...
├── data
│   ├── cityscapes
│   │   ├── leftImg8bit
│   │   │   ├── train
│   │   │   ├── val
│   │   ├── gtFine
│   │   │   ├── train
│   │   │   ├── val
│   ├── gta
│   │   ├── images
│   │   ├── labels
│   ├── synthia
│   │   ├── RGB
│   │   ├── GT
│   │   │   ├── LABELS
├── ...

Data Preprocessing: Finally, please run the following scripts to convert the label IDs to the train IDs and to generate the class index for RCS:

python tools/convert_datasets/gta.py data/gta --nproc 8
python tools/convert_datasets/cityscapes.py data/cityscapes --nproc 8
python tools/convert_datasets/synthia.py data/synthia/ --nproc 8

Training

For convenience, we provide an annotated config file of the final DAFormer. A training job can be launched using:

python run_experiments.py --config configs/daformer/gta2cs_uda_warm_fdthings_rcs_croppl_a999_daformer_mitb5_s0.py

For the experiments in our paper (e.g. network architecture comparison, component ablations, ...), we use a system to automatically generate and train the configs:

python run_experimenty.py --exp <ID>

More information about the available experiments and their assigned IDs, can be found in experiments.py. The generated configs will be stored in configs/generated/.

Testing & Predictions

The provided DAFormer checkpoint trained on GTA->Cityscapes (already downloaded by tools/download_checkpoints.sh) can be tested on the Cityscapes validation set using:

sh test.sh work_dirs/211108_1622_gta2cs_daformer_s0_7f24c

The predictions are saved for inspection to work_dirs/211108_1622_gta2cs_daformer_s0_7f24c/preds and the mIoU of the model is printed to the console. The provided checkpoint should achieve 68.85 mIoU. Refer to the end of work_dirs/211108_1622_gta2cs_daformer_s0_7f24c/20211108_164105.log for more information such as the class-wise IoU.

Similarly, also other models can be tested after the training has finished:

sh test.sh path/to/checkpoint_directory

Framework Structure

This project is based on mmsegmentation version 0.16.0. For more information about the framework structure and the config system, please refer to the mmsegmentation documentation and the mmcv documentation.

The most relevant files for DAFormer are:

Acknowledgements

This project is based on the following open-source projects. We thank their authors for making the source code publically available.

Owner
Lukas Hoyer
Doctoral student at ETH Zurich
Lukas Hoyer
A Streamlit component to render ECharts.

Streamlit - ECharts A Streamlit component to display ECharts. Install pip install streamlit-echarts Usage This library provides 2 functions to display

Fanilo Andrianasolo 290 Dec 30, 2022
implementation of the paper "MarginGAN: Adversarial Training in Semi-Supervised Learning"

MarginGAN This repository is the implementation of the paper "MarginGAN: Adversarial Training in Semi-Supervised Learning". 1."preliminary" is the imp

Van 7 Dec 23, 2022
Notes taking website build with Docker + Django + React.

Notes website. Try it in browser! / But how to run? Description. This is monorepository with notes website. Website provides web interface for creatin

Kirill Zhosul 2 Jul 27, 2022
Building blocks for uncertainty-aware cycle consistency presented at NeurIPS'21.

UncertaintyAwareCycleConsistency This repository provides the building blocks and the API for the work presented in the NeurIPS'21 paper Robustness vi

EML Tübingen 19 Dec 12, 2022
Official PyTorch implementation of "Synthesis of Screentone Patterns of Manga Characters"

Manga Character Screentone Synthesis Official PyTorch implementation of "Synthesis of Screentone Patterns of Manga Characters" presented in IEEE ISM 2

Tsubota 2 Nov 20, 2021
Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Nikolas Petrou 1 Jan 13, 2022
DiffWave is a fast, high-quality neural vocoder and waveform synthesizer.

DiffWave DiffWave is a fast, high-quality neural vocoder and waveform synthesizer. It starts with Gaussian noise and converts it into speech via itera

LMNT 498 Jan 03, 2023
PyTorch implementations of neural network models for keyword spotting

Honk: CNNs for Keyword Spotting Honk is a PyTorch reimplementation of Google's TensorFlow convolutional neural networks for keyword spotting, which ac

Castorini 475 Dec 15, 2022
This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in the time series forecasting research space.

TSForecasting This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in the tim

Rakshitha Godahewa 80 Dec 30, 2022
Content shared at DS-OX Meetup

Streamlit-Projects Streamlit projects available in this repo: An introduction to Streamlit presented at DS-OX (Feb 26, 2020) meetup Streamlit 101 - Ja

Arvindra 69 Dec 23, 2022
Learning Open-World Object Proposals without Learning to Classify

Learning Open-World Object Proposals without Learning to Classify Pytorch implementation for "Learning Open-World Object Proposals without Learning to

Dahun Kim 149 Dec 22, 2022
working repo for my xumx-sliCQ submissions to the ISMIR 2021 MDX

Music Demixing Challenge - xumx-sliCQ This repository is the GitHub mirror of my working submission repository for the AICrowd ISMIR 2021 Music Demixi

4 Aug 25, 2021
交互式标注软件,暂定名 iann

iann 交互式标注软件,暂定名iann。 安装 按照官网介绍安装paddle。 安装其他依赖 pip install -r requirements.txt 运行 git clone https://github.com/PaddleCV-SIG/iann/ cd iann python iann

294 Dec 30, 2022
[ACM MM 2021] Joint Implicit Image Function for Guided Depth Super-Resolution

Joint Implicit Image Function for Guided Depth Super-Resolution This repository contains the code for: Joint Implicit Image Function for Guided Depth

hawkey 78 Dec 27, 2022
[ACL 2022] LinkBERT: A Knowledgeable Language Model 😎 Pretrained with Document Links

LinkBERT: A Knowledgeable Language Model Pretrained with Document Links This repo provides the model, code & data of our paper: LinkBERT: Pretraining

Michihiro Yasunaga 264 Jan 01, 2023
codes for Image Inpainting with External-internal Learning and Monochromic Bottleneck

Image Inpainting with External-internal Learning and Monochromic Bottleneck This repository is for the CVPR 2021 paper: 'Image Inpainting with Externa

97 Nov 29, 2022
gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks.

gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks. It is built on top of the OpenAI G

Robin Henry 99 Dec 12, 2022
Sionna: An Open-Source Library for Next-Generation Physical Layer Research

Sionna: An Open-Source Library for Next-Generation Physical Layer Research Sionna™ is an open-source Python library for link-level simulations of digi

NVIDIA Research Projects 313 Dec 22, 2022
This repository for project that can Automate Number Plate Recognition (ANPR) in Morocco Licensed Vehicles. 💻 + 🚙 + 🇲🇦 = 🤖 🕵🏻‍♂️

MoroccoAI Data Challenge (Edition #001) This Reposotory is result of our work in the comepetiton organized by MoroccoAI in the context of the first Mo

SAFOINE EL KHABICH 14 Oct 31, 2022