Tools for mathematical optimization region

Overview

README.md

中文博客主页:https://blog.csdn.net/linjing_zyq

pip install optimtool

1. 无约束优化算法性能对比

前五个参数完全一致,其中第四个参数是绘图接口,默认绘制单个算法的迭代过程;第五个参数是输出函数迭代值接口,默认为不输出。

method:用于传递线搜索方式

  • from optimtool.unconstrain import gradient_descent
方法 函数参数 调用示例
解方程得到精确解法(solve) solve(funcs, args, x_0, draw=True, output_f=False, epsilon=1e-10, k=0) gradient_descent.solve(funcs, args, x_0)
基于Grippo非单调线搜索的梯度下降法 barzilar_borwein(funcs, args, x_0, draw=True, output_f=False, method="grippo", M=20, c1=0.6, beta=0.6, alpha=1, epsilon=1e-10, k=0) gradient_descent.barzilar_borwein(funcs, args, x_0, method="grippo")
基于ZhangHanger非单调线搜索的梯度下降法 barzilar_borwein(funcs, args, x_0, draw=True, output_f=False, method="ZhangHanger", M=20, c1=0.6, beta=0.6, alpha=1, epsilon=1e-10, k=0) gradient_descent.barzilar_borwein(funcs, args, x_0, method="ZhangHanger")
基于最速下降法的梯度下降法 steepest(funcs, args, x_0, draw=True, output_f=False, method="wolfe", epsilon=1e-10, k=0) gradient_descent.steepest(funcs, args, x_0)
  • from optimtool.unconstrain import newton
方法 函数参数 调用示例
经典牛顿法 classic(funcs, args, x_0, draw=True, output_f=False, epsilon=1e-10, k=0) newton.classic(funcs, args, x_0)
基于armijo线搜索方法的修正牛顿法 modified(funcs, args, x_0, draw=True, output_f=False, method="armijo", m=20, epsilon=1e-10, k=0) newton.modified(funcs, args, x_0, method="armijo")
基于goldstein线搜索方法的修正牛顿法 modified(funcs, args, x_0, draw=True, output_f=False, method="goldstein", m=20, epsilon=1e-10, k=0) newton.modified(funcs, args, x_0, method="goldstein")
基于wolfe线搜索方法的修正牛顿法 modified(funcs, args, x_0, draw=True, output_f=False, method="wolfe", m=20, epsilon=1e-10, k=0) newton.modified(funcs, args, x_0, method="wolfe")
基于armijo线搜索方法的非精确牛顿法 CG(funcs, args, x_0, draw=True, output_f=False, method="armijo", epsilon=1e-6, k=0) newton.CG(funcs, args, x_0, method="armijo")
基于goldstein线搜索方法的非精确牛顿法 CG(funcs, args, x_0, draw=True, output_f=False, method="goldstein", epsilon=1e-6, k=0) newton.CG(funcs, args, x_0, method="goldstein")
基于wolfe线搜索方法的非精确牛顿法 CG(funcs, args, x_0, draw=True, output_f=False, method="wolfe", epsilon=1e-6, k=0) newton.CG(funcs, args, x_0, method="wolfe")
  • from optimtool.unconstrain import newton_quasi
方法 函数参数 调用示例
基于BFGS方法更新海瑟矩阵的拟牛顿法 bfgs(funcs, args, x_0, draw=True, output_f=False, method="wolfe", m=20, epsilon=1e-10, k=0) newton_quasi.bfgs(funcs, args, x_0)
基于DFP方法更新海瑟矩阵的拟牛顿法 dfp(funcs, args, x_0, draw=True, output_f=False, method="wolfe", m=20, epsilon=1e-4, k=0) newton_quasi.dfp(funcs, args, x_0)
基于有限内存BFGS方法更新海瑟矩阵的拟牛顿法 L_BFGS(funcs, args, x_0, draw=True, output_f=False, method="wolfe", m=6, epsilon=1e-10, k=0) newton_quasi.L_BFGS(funcs, args, x_0)
  • from optimtool.unconstrain import trust_region
方法 函数参数 调用示例
基于截断共轭梯度法的信赖域算法 steihaug_CG(funcs, args, x_0, draw=True, output_f=False, m=100, r0=1, rmax=2, eta=0.2, p1=0.4, p2=0.6, gamma1=0.5, gamma2=1.5, epsilon=1e-6, k=0) trust_region.steihaug_CG(funcs, args, x_0)
import sympy as sp
import matplotlib.pyplot as plt
import optimtool as oo

f, x1, x2, x3, x4 = sp.symbols("f x1 x2 x3 x4")
f = (x1 - 1)**2 + (x2 - 1)**2 + (x3 - 1)**2 + (x1**2 + x2**2 + x3**2 + x4**2 - 0.25)**2
funcs = sp.Matrix([f])
args = sp.Matrix([x1, x2, x3, x4])
x_0 = (1, 2, 3, 4)

# 无约束优化测试函数性能对比
f_list = []
title = ["gradient_descent_barzilar_borwein", "newton_CG", "newton_quasi_L_BFGS", "trust_region_steihaug_CG"]
colorlist = ["maroon", "teal", "slateblue", "orange"]
_, _, f = oo.unconstrain.gradient_descent.barzilar_borwein(funcs, args, x_0, False, True)
f_list.append(f)
_, _, f = oo.unconstrain.newton.CG(funcs, args, x_0, False, True)
f_list.append(f)
_, _, f = oo.unconstrain.newton_quasi.L_BFGS(funcs, args, x_0, False, True)
f_list.append(f)
_, _, f = oo.unconstrain.trust_region.steihaug_CG(funcs, args, x_0, False, True)
f_list.append(f)

# 绘图
handle = []
for j, z in zip(colorlist, f_list):
    ln, = plt.plot([i for i in range(len(z))], z, c=j, marker='o', linestyle='dashed')
    handle.append(ln)
plt.xlabel("$Iteration \ times \ (k)$")
plt.ylabel("$Objective \ function \ value: \ f(x_k)$")
plt.legend(handle, title)
plt.title("Performance Comparison")
plt.show()

2. 非线性最小二乘问题

  • from optimtool.unconstrain import nonlinear_least_square

method:用于传递线搜索方法

方法 函数参数 调用示例
基于高斯牛顿法的非线性最小二乘问题解法 gauss_newton(funcr, args, x_0, draw=True, output_f=False, method="wolfe", epsilon=1e-10, k=0) nonlinear_least_square.gauss_newton(funcr, args, x_0)
基于levenberg_marquardt的非线性最小二乘问题解法 levenberg_marquardt(funcr, args, x_0, draw=True, output_f=False, m=100, lamk=1, eta=0.2, p1=0.4, p2=0.9, gamma1=0.7, gamma2=1.3, epsilon=1e-10, k=0) nonlinear_least_square.levenberg_marquardt(funcr, args, x_0)
import sympy as sp
import matplotlib.pyplot as plt
import optimtool as oo

r1, r2, x1, x2 = sp.symbols("r1 r2 x1 x2")
r1 = x1**3 - 2*x2**2 - 1
r2 = 2*x1 + x2 - 2
funcr = sp.Matrix([r1, r2])
args = sp.Matrix([x1, x2])
x_0 = (2, 2)

f_list = []
title = ["gauss_newton", "levenberg_marquardt"]
colorlist = ["maroon", "teal"]
_, _, f = oo.unconstrain.nonlinear_least_square.gauss_newton(funcr, args, x_0, False, True) # 第五参数控制输出函数迭代值列表
f_list.append(f)
_, _, f = oo.unconstrain.nonlinear_least_square.levenberg_marquardt(funcr, args, x_0, False, True)
f_list.append(f)

# 绘图
handle = []
for j, z in zip(colorlist, f_list):
    ln, = plt.plot([i for i in range(len(z))], z, c=j, marker='o', linestyle='dashed')
    handle.append(ln)
plt.xlabel("$Iteration \ times \ (k)$")
plt.ylabel("$Objective \ function \ value: \ f(x_k)$")
plt.legend(handle, title)
plt.title("Performance Comparison")
plt.show()

3. 等式约束优化测试

  • from optimtool.constrain import equal

无约束内核默认采用wolfe线搜索方法

方法 函数参数 调用示例
二次罚函数法 penalty_quadratic(funcs, args, cons, x_0, draw=True, output_f=False, method="gradient_descent", sigma=10, p=2, epsilon=1e-4, k=0) equal.penalty_quadratic(funcs, args, cons, x_0)
增广拉格朗日法 lagrange_augmented(funcs, args, cons, x_0, draw=True, output_f=False, method="gradient_descent", lamk=6, sigma=10, p=2, etak=1e-4, epsilon=1e-6, k=0) equal.lagrange_augmented(funcs, args, cons, x_0)
import numpy as np
import sympy as sp
import matplotlib.pyplot as plt
import optimtool as oo

f, x1, x2 = sp.symbols("f x1 x2")
f = x1 + np.sqrt(3) * x2
c1 = x1**2 + x2**2 - 1
funcs = sp.Matrix([f])
cons = sp.Matrix([c1])
args = sp.Matrix([x1, x2])
x_0 = (-1, -1)

f_list = []
title = ["penalty_quadratic", "lagrange_augmented"]
colorlist = ["maroon", "teal"]
_, _, f = oo.constrain.equal.penalty_quadratic(funcs, args, cons, x_0, False, True) # 第四个参数控制单个算法不显示迭代图,第五参数控制输出函数迭代值列表
f_list.append(f)
_, _, f = oo.constrain.equal.lagrange_augmented(funcs, args, cons, x_0, False, True)
f_list.append(f)

# 绘图
handle = []
for j, z in zip(colorlist, f_list):
    ln, = plt.plot([i for i in range(len(z))], z, c=j, marker='o', linestyle='dashed')
    handle.append(ln)
plt.xlabel("$Iteration \ times \ (k)$")
plt.ylabel("$Objective \ function \ value: \ f(x_k)$")
plt.legend(handle, title)
plt.title("Performance Comparison")
plt.show()

4. 不等式约束优化测试

  • from optimtool.constrain import unequal

无约束内核默认采用wolfe线搜索方法

方法 函数参数 调用示例
二次罚函数法 penalty_quadratic(funcs, args, cons, x_0, draw=True, output_f=False, method="gradient_descent", sigma=1, p=0.4, epsilon=1e-10, k=0) unequal.penalty_quadratic(funcs, args, cons, x_0)
内点(分式)罚函数法 penalty_interior_fraction(funcs, args, cons, x_0, draw=True, output_f=False, method="gradient_descent", sigma=12, p=0.6, epsilon=1e-6, k=0) unequal.penalty_interior_fraction(funcs, args, cons, x_0)
拉格朗日法(本质上为不存在等式约束) lagrange_augmented(funcs, args, cons, x_0, draw=True, output_f=False, method="gradient_descent", muk=10, sigma=8, alpha=0.2, beta=0.7, p=2, eta=1e-1, epsilon=1e-4, k=0) unequal.lagrange_augmented(funcs, args, cons, x_0)
import sympy as sp
import matplotlib.pyplot as plt
import optimtool as oo

f, x1, x2 = sp.symbols("f x1 x2")
f = x1**2 + (x2 - 2)**2
c1 = 1 - x1
c2 = 2 - x2
funcs = sp.Matrix([f])
cons = sp.Matrix([c1, c2])
args = sp.Matrix([x1, x2])
x_0 = (2, 3)

f_list = []
title = ["penalty_quadratic", "penalty_interior_fraction"]
colorlist = ["maroon", "teal"]
_, _, f = oo.constrain.unequal.penalty_quadratic(funcs, args, cons, x_0, False, True, method="newton", sigma=10, epsilon=1e-6) # 第四个参数控制单个算法不显示迭代图,第五参数控制输出函数迭代值列表
f_list.append(f)
_, _, f = oo.constrain.unequal.penalty_interior_fraction(funcs, args, cons, x_0, False, True, method="newton")
f_list.append(f)

# 绘图
handle = []
for j, z in zip(colorlist, f_list):
    ln, = plt.plot([i for i in range(len(z))], z, c=j, marker='o', linestyle='dashed')
    handle.append(ln)
plt.xlabel("$Iteration \ times \ (k)$")
plt.ylabel("$Objective \ function \ value: \ f(x_k)$")
plt.legend(handle, title)
plt.title("Performance Comparison")
plt.show()

单独测试拉格朗日方法

# 导入符号运算的包
import sympy as sp

# 导入约束优化
import optimtool as oo

# 构造函数
f1 = sp.symbols("f1")
x1, x2, x3, x4 = sp.symbols("x1 x2 x3 x4")
f1 = x1**2 + x2**2 + 2*x3**3 + x4**2 - 5*x1 - 5*x2 - 21*x3 + 7*x4
c1 = 8 - x1 + x2 - x3 + x4 - x1**2 - x2**2 - x3**2 - x4**2
c2 = 10 + x1 + x4 - x1**2 - 2*x2**2 - x3**2 - 2*x4**2
c3 = 5 - 2*x1 + x2 + x4 - 2*x1**2 - x2**2 - x3**2
cons_unequal1 = sp.Matrix([c1, c2, c3])
funcs1 = sp.Matrix([f1])
args1 = sp.Matrix([x1, x2, x3, x4])
x_1 = (0, 0, 0, 0)

x_0, _, f = oo.constrain.unequal.lagrange_augmented(funcs1, args1, cons_unequal1, x_1, output_f=True, method="trust_region", sigma=1, muk=1, p=1.2)
for i in range(len(x_0)):
     x_0[i] = round(x_0[i], 2)
print("\n最终收敛点:", x_0, "\n目标函数值:", f[-1])

result

最终收敛点: [ 2.5   2.5   1.87 -3.5 ] 
目标函数值: -50.94151192711454

5. 混合等式约束测试

  • from optimtool.constrain import mixequal

无约束内核默认采用wolfe线搜索方法

方法 函数参数 调用示例
二次罚函数法 penalty_quadratic(funcs, args, cons_equal, cons_unequal, x_0, draw=True, output_f=False, method="gradient_descent", sigma=1, p=0.6, epsilon=1e-10, k=0) mixequal.penalty_quadratic(funcs, args, cons_equal, cons_unequal, x_0)
L1罚函数法 penalty_L1(funcs, args, cons_equal, cons_unequal, x_0, draw=True, output_f=False, method="gradient_descent", sigma=1, p=0.6, epsilon=1e-10, k=0) mixequal.penalty_L1(funcs, args, cons_equal, cons_unequal, x_0)
增广拉格朗日函数法 lagrange_augmented(funcs, args, cons_equal, cons_unequal, x_0, draw=True, output_f=False, method="gradient_descent", lamk=6, muk=10, sigma=8, alpha=0.5, beta=0.7, p=2, eta=1e-3, epsilon=1e-4, k=0) mixequal.lagrange_augmented(funcs, args, cons_equal, cons_unequal, x_0)
import sympy as sp
import matplotlib.pyplot as plt
import optimtool as oo

f, x1, x2 = sp.symbols("f x1 x2")
f = (x1 - 2)**2 + (x2 - 1)**2
c1 = x1 - 2*x2
c2 = 0.25*x1**2 - x2**2 - 1
funcs = sp.Matrix([f])
cons_equal = sp.Matrix([c1])
cons_unequal = sp.Matrix([c2])
args = sp.Matrix([x1, x2])
x_0 = (0.5, 1)

f_list = []
title = ["penalty_quadratic", "penalty_L1", "lagrange_augmented"]
colorlist = ["maroon", "teal", "orange"]
_, _, f = oo.constrain.mixequal.penalty_quadratic(funcs, args, cons_equal, cons_unequal, x_0, False, True) # 第四个参数控制单个算法不显示迭代图,第五参数控制输出函数迭代值列表
f_list.append(f)
_, _, f = oo.constrain.mixequal.penalty_L1(funcs, args, cons_equal, cons_unequal, x_0, False, True)
f_list.append(f)
_, _, f = oo.constrain.mixequal.lagrange_augmented(funcs, args, cons_equal, cons_unequal, x_0, False, True)
f_list.append(f)

# 绘图
handle = []
for j, z in zip(colorlist, f_list):
    ln, = plt.plot([i for i in range(len(z))], z, c=j, marker='o', linestyle='dashed')
    handle.append(ln)
plt.xlabel("$Iteration \ times \ (k)$")
plt.ylabel("$Objective \ function \ value: \ f(x_k)$")
plt.legend(handle, title)
plt.title("Performance Comparison")
plt.show()

6. Lasso问题测试

  • from optimtool.example import Lasso
方法 函数参数 调用示例
梯度下降法 gradient_descent(A, b, mu, args, x_0, draw=True, output_f=False, delta=10, alp=1e-3, epsilon=1e-2, k=0) Lasso.gradient_descent(A, b, mu, args, x_0,)
次梯度算法 subgradient(A, b, mu, args, x_0, draw=True, output_f=False, alphak=2e-2, epsilon=1e-3, k=0) Lasso.subgradient(A, b, mu, args, x_0,)
import numpy as np
import sympy as sp
import matplotlib.pyplot as plt
import optimtool as oo

import scipy.sparse as ss
f, A, b, mu = sp.symbols("f A b mu")
x = sp.symbols('x1:9')
m = 4
n = 8
u = (ss.rand(n, 1, 0.1)).toarray()
A = np.random.randn(m, n)
b = A.dot(u)
mu = 1e-2
args = sp.Matrix(x)
x_0 = tuple([1 for i in range(8)])

f_list = []
title = ["gradient_descent", "subgradient"]
colorlist = ["maroon", "teal"]
_, _, f = oo.example.Lasso.gradient_descent(A, b, mu, args, x_0, False, True, epsilon=1e-4)# 第四个参数控制单个算法不显示迭代图,第五参数控制输出函数迭代值列表
f_list.append(f)
_, _, f = oo.example.Lasso.subgradient(A, b, mu, args, x_0, False, True)
f_list.append(f)

# 绘图
handle = []
for j, z in zip(colorlist, f_list):
    ln, = plt.plot([i for i in range(len(z))], z, c=j, marker='o', linestyle='dashed')
    handle.append(ln)
plt.xlabel("$Iteration \ times \ (k)$")
plt.ylabel("$Objective \ function \ value: \ f(x_k)$")
plt.legend(handle, title)
plt.title("Performance Comparison")
plt.show()

7. WanYuan问题测试

  • from optimtool.example import WanYuan
方法 函数参数 调用示例
构造7个残差函数并采用高斯牛顿法 gauss_newton(m, n, a, b, c, x3, y3, x_0, draw=False, eps=1e-10) WanYuan.gauss_newton(1, 2, 0.2, -1.4, 2.2, 2**(1/2), 0, (0, -1, -2.5, -0.5, 2.5, -0.05), draw=True)

问题描述

给定直线方程的斜率($m$)与截距($n$),给定一元二次方程的二次项系数($a$)、一次项系数($b$)、常数($c$),给定一个过定点的圆($x_3$,$y_3$​​),要求这个过定点的圆与直线($x_1$,$y_1$)和抛物线($x_2$,$y_2$)相切的切点以及该圆的圆心($x_0$,$y_0$)。

code

# 导包
import sympy as sp
import matplotlib.pyplot as plt
import optimtool as oo

# 构造数据
m = 1
n = 2
a = 0.2
b = -1.4
c = 2.2
x3 = 2*(1/2)
y3 = 0
x_0 = (0, -1, -2.5, -0.5, 2.5, -0.05)

# 训练
oo.example.WanYuan.gauss_newton(1, 2, 0.2, -1.4, 2.2, 2**(1/2), 0, (0, -1, -2.5, -0.5, 2.5, -0.05), draw=True)
You might also like...
A Python step-by-step primer for Machine Learning and Optimization

early-ML Presentation General Machine Learning tutorials A Python step-by-step primer for Machine Learning and Optimization This github repository gat

Implementation of linesearch Optimization Algorithms in Python

Nonlinear Optimization Algorithms During my time as Scientific Assistant at the Karlsruhe Institute of Technology (Germany) I implemented various Opti

Microsoft contributing libraries, tools, recipes, sample codes and workshop contents for machine learning & deep learning.

Microsoft contributing libraries, tools, recipes, sample codes and workshop contents for machine learning & deep learning.

A single Python file with some tools for visualizing machine learning in the terminal.
A single Python file with some tools for visualizing machine learning in the terminal.

Machine Learning Visualization Tools A single Python file with some tools for visualizing machine learning in the terminal. This demo is composed of t

🔬 A curated list of awesome machine learning strategies & tools in financial market.

🔬 A curated list of awesome machine learning strategies & tools in financial market.

A Tools that help Data Scientists and ML engineers train and deploy ML models.

Domino Research This repo contains projects under active development by the Domino R&D team. We build tools that help Data Scientists and ML engineers

A collection of Scikit-Learn compatible time series transformers and tools.
A collection of Scikit-Learn compatible time series transformers and tools.

tsfeast A collection of Scikit-Learn compatible time series transformers and tools. Installation Create a virtual environment and install: From PyPi p

Tools for Optuna, MLflow and the integration of both.
Tools for Optuna, MLflow and the integration of both.

HPOflow - Sphinx DOC Tools for Optuna, MLflow and the integration of both. Detailed documentation with examples can be found here: Sphinx DOC Table of

ClearML - Auto-Magical Suite of tools to streamline your ML workflow. Experiment Manager, MLOps and Data-Management
ClearML - Auto-Magical Suite of tools to streamline your ML workflow. Experiment Manager, MLOps and Data-Management

ClearML - Auto-Magical Suite of tools to streamline your ML workflow Experiment Manager, MLOps and Data-Management ClearML Formerly known as Allegro T

Comments
  • Minimize the Amount of Guided Packages

    Minimize the Amount of Guided Packages

    Is it necessary to reconstruct the matrix operation system of numpy and the symbolic algebra operation system of sympy in order to reduce the amount of dependent packets in the process of guilding packets.

    opened by zzqwdwd 1
Releases(v1.5)
  • v1.5(Nov 10, 2022)

    This version reduces the memory pressure caused by typing compared to v1.4.

    import optimtool as oo
    x1, x2, x3, x4 = sp.symbols("x1 x2 x3 x4") # Declare symbolic variables
    f = (x1 - 1)**2 + (x2 - 1)**2 + (x3 - 1)**2 + (x1**2 + x2**2 + x3**2 + x4**2 - 0.25)**2
    oo.unconstrain.gradient_descent.barzilar_borwein(f, [x1, x2, x3, x4], (1, 2, 3, 4)) # funcs, args, x_0
    
    Source code(tar.gz)
    Source code(zip)
  • v1.4(Nov 8, 2022)

    import optimtool as oo
    x1, x2, x3, x4 = sp.symbols("x1 x2 x3 x4") # Declare symbolic variables
    f = (x1 - 1)**2 + (x2 - 1)**2 + (x3 - 1)**2 + (x1**2 + x2**2 + x3**2 + x4**2 - 0.25)**2
    oo.unconstrain.gradient_descent.barzilar_borwein(f, [x1, x2, x3, x4], (1, 2, 3, 4)) # funcs, args, x_0
    

    Use FuncArray, ArgArray, PointArray, IterPointType, OutputType in typing, and delete functions/ folder. I use many means to accelerate the method, I can't enumerate them here.

    Source code(tar.gz)
    Source code(zip)
  • v1.3(Apr 25, 2022)

    In v2.3.4, We call a method as follows:

    import optimtool as oo
    x1, x2, x3, x4 = sp.symbols("x1 x2 x3 x4")
    f = (x1 - 1)**2 + (x2 - 1)**2 + (x3 - 1)**2 + (x1**2 + x2**2 + x3**2 + x4**2 - 0.25)**2
    funcs = sp.Matrix([f])
    args = sp.Matrix([x1, x2, x3, x4])
    x_0 = (1, 2, 3, 4)
    oo.unconstrain.gradient_descent.barzilar_borwein(funcs, args, x_0)
    

    But in v2.3.5, We now call a method as follows: (It reduces the trouble of constructing data externally.)

    import optimtool as oo
    x1, x2, x3, x4 = sp.symbols("x1 x2 x3 x4") # Declare symbolic variables
    f = (x1 - 1)**2 + (x2 - 1)**2 + (x3 - 1)**2 + (x1**2 + x2**2 + x3**2 + x4**2 - 0.25)**2
    oo.unconstrain.gradient_descent.barzilar_borwein(f, [x1, x2, x3, x4], (1, 2, 3, 4)) # funcs, args, x_0
    # funcs(args) can be list, tuple, sp.Matrix
    

    Our function parameter input method is similar to matlab, and supports more methods than matlab.

    Source code(tar.gz)
    Source code(zip)
ZenML 🙏: MLOps framework to create reproducible ML pipelines for production machine learning.

ZenML is an extensible, open-source MLOps framework to create production-ready machine learning pipelines. It has a simple, flexible syntax, is cloud and tool agnostic, and has interfaces/abstraction

ZenML 2.6k Jan 08, 2023
Machine learning that just works, for effortless production applications

Machine learning that just works, for effortless production applications

Elisha Yadgaran 16 Sep 02, 2022
using Machine Learning Algorithm to classification AppleStore application

AppleStore-classification-with-Machine-learning-Algo- using Machine Learning Algorithm to classification AppleStore application. the first step : 1: p

Mohammed Hussien 2 May 02, 2022
inding a method to objectively quantify skill versus chance in games, using reinforcement learning

Skill-vs-chance-games-analysis - Finding a method to objectively quantify skill versus chance in games, using reinforcement learning

Marcus Chiam 4 Nov 19, 2022
Timeseries analysis for neuroscience data

=================================================== Nitime: timeseries analysis for neuroscience data ===============================================

NIPY developers 212 Dec 09, 2022
AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications.

AutoTabular AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just

wenqi 2 Jun 26, 2022
Uber Open Source 1.6k Dec 31, 2022
MICOM is a Python package for metabolic modeling of microbial communities

Welcome MICOM is a Python package for metabolic modeling of microbial communities currently developed in the Gibbons Lab at the Institute for Systems

57 Dec 21, 2022
customer churn prediction prevention in telecom industry using machine learning and survival analysis

Telco Customer Churn Prediction - Plotly Dash Application Description This dash application allows you to predict telco customer churn using machine l

Benaissa Mohamed Fayçal 3 Nov 20, 2021
Skoot is a lightweight python library of machine learning transformer classes that interact with scikit-learn and pandas.

Skoot is a lightweight python library of machine learning transformer classes that interact with scikit-learn and pandas. Its objective is to ex

Taylor G Smith 54 Aug 20, 2022
Fundamentals of Machine Learning

Fundamentals-of-Machine-Learning This repository introduces the basics of machine learning algorithms for preprocessing, regression and classification

Happy N. Monday 3 Feb 15, 2022
A pure-python implementation of the UpSet suite of visualisation methods by Lex, Gehlenborg et al.

pyUpSet A pure-python implementation of the UpSet suite of visualisation methods by Lex, Gehlenborg et al. Contents Purpose How to install How it work

288 Jan 04, 2023
End to End toy example of MLOps

churn_model MLOps Toy Example End to End You might find below links useful Connect VSCode to Git MLFlow Port Heroku App Project Organization ├── LICEN

Ashish Tele 6 Feb 06, 2022
Time Series Prediction with tf.contrib.timeseries

TensorFlow-Time-Series-Examples Additional examples for TensorFlow Time Series(TFTS). Read a Time Series with TFTS From a Numpy Array: See "test_input

Zhiyuan He 476 Nov 17, 2022
Code for the TCAV ML interpretability project

Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV) Been Kim, Martin Wattenberg, Justin Gilmer, C

552 Dec 27, 2022
Extreme Learning Machine implementation in Python

Python-ELM v0.3 --- ARCHIVED March 2021 --- This is an implementation of the Extreme Learning Machine [1][2] in Python, based on scikit-learn. From

David C. Lambert 511 Dec 20, 2022
A Tools that help Data Scientists and ML engineers train and deploy ML models.

Domino Research This repo contains projects under active development by the Domino R&D team. We build tools that help Data Scientists and ML engineers

Domino Data Lab 73 Oct 17, 2022
Azure MLOps (v2) solution accelerators.

Azure MLOps (v2) solution accelerator Welcome to the MLOps (v2) solution accelerator repository! This project is intended to serve as the starting poi

Microsoft Azure 233 Jan 01, 2023
This repository demonstrates the usage of hover to understand and supervise a machine learning task.

Hover Example Apps (works out-of-the-box on Binder) This repository demonstrates the usage of hover to understand and supervise a machine learning tas

Pavel 43 Dec 03, 2021
MegFlow - Efficient ML solutions for long-tailed demands.

Efficient ML solutions for long-tailed demands.

旷视天元 MegEngine 371 Dec 21, 2022