Learnable Motion Coherence for Correspondence Pruning

Related tags

Deep LearningLMCNet
Overview

Learnable Motion Coherence for Correspondence Pruning
Yuan Liu, Lingjie Liu, Cheng Lin, Zhen Dong, Wenping Wang
Project Page

Any questions or discussions are welcomed!

Requirements & Compilation

  1. Requirements

Required packages are listed in requirements.txt.

The code is tested using Python-3.8.5 with PyTorch 1.7.1.

  1. Compile extra modules
cd network/knn_search
python setup.py build_ext --inplace
cd ../pointnet2_ext
python setup.py build_ext --inplace
cd ../../utils/extend_utils
python build_extend_utils_cffi.py

According to your installation path of CUDA, you may need to revise the variables cuda_version in build_extend_utils_cffi.py.

Datasets & Pretrain Models

  1. Download the YFCC100M dataset and the SUN3D dataset from the OANet repository and the ScanNet dataset from here.

  2. Download pretrained LMCNet models from here and SuperGlue/SuperPoint models from here.

  3. Unzip and arrange all files like the following.

data/
├── superpoint/
    └── superpoint_v1.pth
├── superglue/
    ├── superglue_indoor.pth
    └── superglue_outdoor.pth
├── model/
    ├── lmcnet_sift_indoor/
    ├── lmcnet_sift_outdoor/
    └── lmcnet_spg_indoor/
├── yfcc100m/
├── sun3d_test/
├── sun3d_train/
├── scannet_dataset/
└── scannet_train_dataset/

Evaluation

Evaluate on the YFCC100M with SIFT descriptors and Nearest Neighborhood (NN) matcher:

python eval.py --name scannet --cfg configs/eval/lmcnet_sift_yfcc.yaml

Evaluate on the SUN3D with SIFT descriptors and NN matcher:

python eval.py --name sun3d --cfg configs/eval/lmcnet_sift_sun3d.yaml

Evaluate on the ScanNet with SuperPoint descriptors and SuperGlue matcher:

python eval.py --name scannet --cfg configs/eval/lmcnet_spg_scannet.yaml

Training

  1. Generate training dataset for training on YFCC100M with SIFT descriptor and NN matcher.
python trainset_generate.py \
      --ext_cfg configs/detector/sift.yaml \
      --match_cfg configs/matcher/nn.yaml \
      --output data/yfcc_train_cache \
      --eig_name small_min \
      --prefix yfcc
  1. Model training.
python train_model.py --cfg configs/lmcnet/lmcnet_sift_outdoor_train.yaml

Acknowledgement

We have used codes from the following repositories, and we thank the authors for sharing their codes.

SuperGlue: https://github.com/magicleap/SuperGluePretrainedNetwork

OANet: https://github.com/zjhthu/OANet

KNN-CUDA: https://github.com/vincentfpgarcia/kNN-CUDA

Pointnet2.PyTorch: https://github.com/sshaoshuai/Pointnet2.PyTorch

Owner
liuyuan
liuyuan
OpenIPDM is a MATLAB open-source platform that stands for infrastructures probabilistic deterioration model

Open-Source Toolbox for Infrastructures Probabilistic Deterioration Modelling OpenIPDM is a MATLAB open-source platform that stands for infrastructure

CIVML 0 Jan 20, 2022
Attentive Implicit Representation Networks (AIR-Nets)

Attentive Implicit Representation Networks (AIR-Nets) Preprint | Supplementary | Accepted at the International Conference on 3D Vision (3DV) teaser.mo

29 Dec 07, 2022
A Python toolbox to create adversarial examples that fool neural networks in PyTorch, TensorFlow, and JAX

Foolbox Native: Fast adversarial attacks to benchmark the robustness of machine learning models in PyTorch, TensorFlow, and JAX Foolbox is a Python li

Bethge Lab 2.4k Dec 25, 2022
TAP: Text-Aware Pre-training for Text-VQA and Text-Caption, CVPR 2021 (Oral)

TAP: Text-Aware Pre-training TAP: Text-Aware Pre-training for Text-VQA and Text-Caption by Zhengyuan Yang, Yijuan Lu, Jianfeng Wang, Xi Yin, Dinei Flo

Microsoft 61 Nov 14, 2022
The final project of "Applying AI to EHR Data" of "AI for Healthcare" nanodegree - Udacity.

Patient Selection for Diabetes Drug Testing Project Overview EHR data is becoming a key source of real-world evidence (RWE) for the pharmaceutical ind

Omar Laham 1 Jan 14, 2022
A data-driven approach to quantify the value of classifiers in a machine learning ensemble.

Documentation | External Resources | Research Paper Shapley is a Python library for evaluating binary classifiers in a machine learning ensemble. The

Benedek Rozemberczki 188 Dec 29, 2022
Demos of essentia classifiers hosted on replicate.ai

essentia-replicate-demos Demos of Essentia models hosted on replicate.ai's MTG site. The models Check our site for a complete list of the models avail

Music Technology Group - Universitat Pompeu Fabra 12 Nov 14, 2022
UPSNet: A Unified Panoptic Segmentation Network

UPSNet: A Unified Panoptic Segmentation Network Introduction UPSNet is initially described in a CVPR 2019 oral paper. Disclaimer This repository is te

Uber Research 622 Dec 26, 2022
Point-NeRF: Point-based Neural Radiance Fields

Point-NeRF: Point-based Neural Radiance Fields Project Sites | Paper | Primary c

Qiangeng Xu 662 Jan 01, 2023
A way to store images in YAML.

YAMLImg A way to store images in YAML. I made this after seeing Roadcrosser's JSON-G because it was too inspiring to ignore this opportunity. Installa

5 Mar 14, 2022
Official repository for the paper "Going Beyond Linear Transformers with Recurrent Fast Weight Programmers"

Recurrent Fast Weight Programmers This is the official repository containing the code we used to produce the experimental results reported in the pape

IDSIA 36 Nov 15, 2022
HashNeRF-pytorch - Pure PyTorch Implementation of NVIDIA paper on Instant Training of Neural Graphics primitives

HashNeRF-pytorch Instant-NGP recently introduced a Multi-resolution Hash Encodin

Yash Sanjay Bhalgat 616 Jan 06, 2023
[ICCV 2021] Official Tensorflow Implementation for "Single Image Defocus Deblurring Using Kernel-Sharing Parallel Atrous Convolutions"

KPAC: Kernel-Sharing Parallel Atrous Convolutional block This repository contains the official Tensorflow implementation of the following paper: Singl

Hyeongseok Son 50 Dec 29, 2022
Official implementation for Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020

Likelihood-Regret Official implementation of Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020. T

Xavier 33 Oct 12, 2022
Constructing interpretable quadratic accuracy predictors to serve as an objective function for an IQCQP problem that represents NAS under latency constraints and solve it with efficient algorithms.

IQNAS: Interpretable Integer Quadratic programming Neural Architecture Search Realistic use of neural networks often requires adhering to multiple con

0 Oct 24, 2021
Official Python implementation of the FuzionCoin protocol

PyFuzc Official Python implementation of the FuzionCoin protocol WARNING: Under construction. Use at your own risk. Some functions may not work. Setup

FuzionCoin 3 Jul 07, 2022
Self-supervised spatio-spectro-temporal represenation learning for EEG analysis

EEG-Oriented Self-Supervised Learning and Cluster-Aware Adaptation This repository provides a tensorflow implementation of a submitted paper: EEG-Orie

Wonjun Ko 4 Jun 09, 2022
基于AlphaPose的TensorRT加速

1. Requirements CUDA 11.1 TensorRT 7.2.2 Python 3.8.5 Cython PyTorch 1.8.1 torchvision 0.9.1 numpy 1.17.4 (numpy版本过高会出报错 this issue ) python-package s

52 Dec 06, 2022
DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers

DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers Authors: Jaemin Cho, Abhay Zala, and Mohit Bansal (

Jaemin Cho 98 Dec 15, 2022
Ipython notebook presentations for getting starting with basic programming, statistics and machine learning techniques

Data Science 45-min Intros Every week*, our data science team @Gnip (aka @TwitterBoulder) gets together for about 50 minutes to learn something. While

Scott Hendrickson 1.6k Dec 31, 2022