Get Landsat surface reflectance time-series from google earth engine

Overview

geextract

Google Earth Engine data extraction tool. Quickly obtain Landsat multispectral time-series for exploratory analysis and algorithm testing

Online documentation available at https://loicdtx.github.io/landsat-extract-gee

https://coveralls.io/repos/github/loicdtx/landsat-extract-gee/badge.svg?branch=master https://travis-ci.org/loicdtx/landsat-extract-gee.svg?branch=master

Introduction

A python library (API + command lines) to extract Landsat time-series from the Google Earth Engine platform. Can query single pixels or spatially aggregated values over polygons. When used via the command line, extracted time-series are written to a sqlite database.

The idea is to provide quick access to Landsat time-series for exploratory analysis or algorithm testing. Instead of downloading the whole stack of Landsat scenes, preparing the data locally and extracting the time-series of interest, which may take several days, geextract allows to get time-series in a few seconds.

Compatible with python 2.7 and 3.

Usage

API

The principal function of the API is ts_extract

from geextract import ts_extract
from datetime import datetime

# Extract a Landsat 7 time-series for a 500m radius circular buffer around
# a location in Yucatan
lon = -89.8107197
lat = 20.4159611
LE7_dict_list = ts_extract(lon=lon, lat=lat, sensor='LE7',
                           start=datetime(1999, 1, 1), radius=500)

Command line

geextract comes with two command lines, for extracting Landsat time-series directly from the command line.

  • gee_extract.py: Extract a Landsat multispectral time-series for a single site. Extracted data are automatically added to a sqlite database.
  • gee_extract_batch.py: Batch order Landsat multispectral time-series for multiple locations.
gee_extract.py --help

# Extract all the LT5 bands for a location in Yucatan for the entire Landsat period, with a 500m radius
gee_extract.py -s LT5 -b 1980-01-01 -lon -89.8107 -lat 20.4159 -r 500 -db /tmp/gee_db.sqlite -site uxmal -table col_1
gee_extract.py -s LE7 -b 1980-01-01 -lon -89.8107 -lat 20.4159 -r 500 -db /tmp/gee_db.sqlite -site uxmal -table col_1
gee_extract.py -s LC8 -b 1980-01-01 -lon -89.8107 -lat 20.4159 -r 500 -db /tmp/gee_db.sqlite -site uxmal -table col_1
gee_extract_batch.py --help

# Extract all the LC8 bands in a 500 meters for two locations between 2012 and now
echo "4.7174,44.7814,rompon\n-149.4260,-17.6509,tahiti" > site_list.txt
gee_extract_batch.py site_list.txt -b 1984-01-01 -s LT5 -r 500 -db /tmp/gee_db.sqlite -table landsat_ts
gee_extract_batch.py site_list.txt -b 1984-01-01 -s LE7 -r 500 -db /tmp/gee_db.sqlite -table landsat_ts
gee_extract_batch.py site_list.txt -b 1984-01-01 -s LC8 -r 500 -db /tmp/gee_db.sqlite -table landsat_ts

https://github.com/loicdtx/landsat-extract-gee/raw/master/docs/figs/multispectral_uxmal.png

Installation

You must have a Google Earth Engine account to use the package.

Then, in a vitual environment run:

pip install geextract
earthengine authenticate

This will open a google authentication page in your browser, and will give you an authentication token to paste back in the terminal.

You can check that the authentication process was successful by running.

python -c "import ee; ee.Initialize()"

If nothing happens... it's working.

Benchmark

A quick benchmark of the extraction speed, using a 500 m buffer.

import time
from datetime import datetime
from pprint import pprint
import geextract

lon = -89.8107197
lat = 20.4159611

for sensor in ['LT5', 'LE7', 'LT4', 'LC8']:
    start = time.time()
    out = geextract.ts_extract(lon=lon, lat=lat, sensor=sensor, start=datetime(1980, 1, 1, 0, 0),
                               end=datetime.today(), radius=500)
    end = time.time()

    pprint('%s. Extracted %d records in %.1f seconds' % (sensor, len(out), end - start))
# 'LT5. Extracted 142 records in 1.9 seconds'
# 'LE7. Extracted 249 records in 5.8 seconds'
# 'LT4. Extracted 7 records in 1.0 seconds'
# 'LC8. Extracted 72 records in 2.4 seconds'
Owner
Loïc Dutrieux
I'm a Geo-Spatial specialist with a PhD in satellite remote sensing. Data lover, tool builder and problem solver.
Loïc Dutrieux
Interactive Maps with Geopandas

Create Interactive maps 🗺️ with your geodataframe Geopatra extends geopandas for interactive mapping and attempts to wrap the goodness of amazing map

sangarshanan 46 Aug 16, 2022
A package to fetch sentinel 2 Satellite data from Google.

Sentinel 2 Data Fetcher Installation Create a Virtual Environment and activate it. python3 -m venv venv . venv/bin/activate Install the Package via pi

1 Nov 18, 2021
WIP: extracting Geometry utilities from datacube-core

odc.geo This is still work in progress. This repository contains geometry related code extracted from Open Datacube. For details and motivation see OD

Open Data Cube 34 Jan 09, 2023
A python package that extends Google Earth Engine.

A python package that extends Google Earth Engine GitHub: https://github.com/davemlz/eemont Documentation: https://eemont.readthedocs.io/ PyPI: https:

David Montero Loaiza 307 Jan 01, 2023
Geospatial Image Processing for Python

GIPPY Gippy is a Python library for image processing of geospatial raster data. The core of the library is implemented as a C++ library, libgip, with

GIPIT 83 Aug 19, 2022
A modern, geometric typeface by @chrismsimpson (last commit @ 85fa625 Jun 9, 2020 before deletion)

Metropolis A modern, geometric typeface. Influenced by other popular geometric, minimalist sans-serif typefaces of the new millenium. Designed for opt

Darius 183 Dec 25, 2022
Record railway train route profile with GNSS tools

Train route profile recording with GNSS technology based on ARDUINO platform Project target Develop GNSS recording tools based on the ARDUINO platform

tomcom 1 Jan 01, 2022
Construct and use map tile grids in different projection.

Morecantile +-------------+-------------+ ymax | | | | x: 0 | x: 1 | | y: 0 | y: 0

Development Seed 67 Dec 23, 2022
Python bindings to libpostal for fast international address parsing/normalization

pypostal These are the official Python bindings to https://github.com/openvenues/libpostal, a fast statistical parser/normalizer for street addresses

openvenues 651 Dec 16, 2022
a Geolocator made in python

Geolocator A Geolocator made in python ✨ Features locates ur location using ur ip thats it! 💁‍♀️ How to use first download the locator.py file instal

Portgas D Ace 1 Oct 27, 2021
Python interface to PROJ (cartographic projections and coordinate transformations library)

pyproj Python interface to PROJ (cartographic projections and coordinate transformations library). Documentation Stable: http://pyproj4.github.io/pypr

832 Dec 31, 2022
QLUSTER is a relative orbit design tool for formation flying satellite missions and space rendezvous scenarios

QLUSTER is a relative orbit design tool for formation flying satellite missions and space rendezvous scenarios, that I wrote in Python 3 for my own research and visualisation. It is currently unfinis

Samuel Low 9 Aug 23, 2022
Computer Vision in Python

Mahotas Python Computer Vision Library Mahotas is a library of fast computer vision algorithms (all implemented in C++ for speed) operating over numpy

Luis Pedro Coelho 792 Dec 20, 2022
Stitch image tiles into larger composite TIFs

untiler Utility to take a directory of {z}/{x}/{y}.(jpg|png) tiles, and stitch into a scenetiff (tif w/ exact merc tile bounds). Future versions will

Mapbox 38 Dec 16, 2022
Raster processing benchmarks for Python and R packages

Raster processing benchmarks This repository contains a collection of raster processing benchmarks for Python and R packages. The tests cover the most

Krzysztof Dyba 13 Oct 24, 2022
Fiona reads and writes geographic data files

Fiona Fiona reads and writes geographic data files and thereby helps Python programmers integrate geographic information systems with other computer s

987 Jan 04, 2023
Deal with Bing Maps Tiles and Pixels / WGS 84 coordinates conversions, and generate grid Shapefiles

PyBingTiles This is a small toolkit in order to deal with Bing Tiles, used i.e. by Facebook for their Data for Good datasets. Install Clone this repos

Shoichi 1 Dec 08, 2021
A Python framework for building geospatial web-applications

Hey there, this is Greppo... A Python framework for building geospatial web-applications. Greppo is an open-source Python framework that makes it easy

Greppo 304 Dec 27, 2022
OSMnx: Python for street networks. Retrieve, model, analyze, and visualize street networks and other spatial data from OpenStreetMap.

OSMnx OSMnx is a Python package that lets you download geospatial data from OpenStreetMap and model, project, visualize, and analyze real-world street

Geoff Boeing 4k Jan 08, 2023
Specification for storing geospatial vector data (point, line, polygon) in Parquet

GeoParquet About This repository defines how to store geospatial vector data (point, lines, polygons) in Apache Parquet, a popular columnar storage fo

Open Geospatial Consortium 449 Dec 27, 2022