Meta Learning Backpropagation And Improving It (VSML)

Overview

Meta Learning Backpropagation And Improving It (VSML)

This is research code for the NeurIPS 2021 publication Kirsch & Schmidhuber 2021.

Many concepts have been proposed for meta learning with neural networks (NNs), e.g., NNs that learn to reprogram fast weights, Hebbian plasticity, learned learning rules, and meta recurrent NNs. Our Variable Shared Meta Learning (VSML) unifies the above and demonstrates that simple weight-sharing and sparsity in an NN is sufficient to express powerful learning algorithms (LAs) in a reusable fashion. A simple implementation of VSML where the weights of a neural network are replaced by tiny LSTMs allows for implementing the backpropagation LA solely by running in forward-mode. It can even meta learn new LAs that differ from online backpropagation and generalize to datasets outside of the meta training distribution without explicit gradient calculation. Introspection reveals that our meta learned LAs learn through fast association in a way that is qualitatively different from gradient descent.

Installation

Create a virtual env

python3 -m venv venv
. venv/bin/activate

Install pip dependencies

pip3 install --upgrade pip wheel setuptools
pip3 install -r requirements.txt

Initialize weights and biases

wandb init

Inspect your results at https://wandb.ai/.

Run instructions

Non distributed

For any algorithm that does not require multiple workers.

python3 launch.py --config_files CONFIG_FILES --config arg1=val1 arg2=val2

Distributed

For any algorithm that does require multiple workers

GPU_COUNT=4 mpirun -n NUM_WORKERS python3 assign_gpu.py python3 launch.py

where NUM_WORKERS is the number of workers to run. The assign_gpu python script distributes the mpi workers evenly over the specified GPUs

Alternatively, specify the CUDA_VISIBLE_DEVICES instead of GPU_COUNT env variable:

CUDA_VISIBLE_DEVICES=0,2,3 mpirun -n NUM_WORKERS python3 assign_gpu.py python3 launch.py

Slurm-based cluster

Modify slurm/schedule.sh and slurm/job.sh to suit your environment.

bash slurm/schedule.sh --nodes=7 --ntasks-per-node=12 -- python3 launch.py --config_files CONFIG_FILES

If only a single worker is required (non-distributed), set --nodes=1 and --ntasks-per-node=1.

Remote (via ssh)

Modify ssh/schedule.sh to suit your environment. Requires gpustat in .local/bin/gpustat, via pip3 install --user gpustat. Also install tmux and mpirun.

bash ssh/schedule.sh --host HOST_NAME --nodes=7 --ntasks-per-node=12 -- python3 launch.py --config_files CONFIG_FILES

Example training runs

Section 4.2 Figure 6

VSML

slurm/schedule.py --nodes=128 --time 04:00:00 -- python3 launch.py --config_files configs/rand_proj.yaml

You can also try fewer nodes and use --config training.population_size=128. Or use backpropagation-based meta optimization --config_files configs/{rand_proj,backprop}.yaml.

Section 4.4 Figure 8

VSML

slurm/schedule.py --array=1-11 --nodes=128 --time 04:00:00 -- python3 launch.py --array configs/array/datasets.yaml

Meta RNN (Hochreiter 2001)

slurm/schedule.py --array=1-11 --nodes=32 --time 04:00:00 -- python3 launch.py --array configs/array/datasets.yaml --config_files configs/{metarnn,pad}.yaml --tags metarnn

Fast weight memory

slurm/schedule.py --array=1-11 --nodes=32 --time 04:00:00 -- python3 launch.py --array configs/array/datasets.yaml --config_files configs/{fwmemory,pad}.yaml --tags fwmemory

SGD

slurm/schedule.py --array=1-4 --nodes=2 --time 00:15:00 -- python3 launch.py --array configs/array/sgd.yaml --config_files configs/sgd.yaml --tags sgd

Hebbian

slurm/schedule.py --array=1-11 --nodes=32 --time 04:00:00 -- python3 launch.py --array configs/array/datasets.yaml --config_files configs/{hebbian,pad}.yaml --tags hebbian
Owner
Louis Kirsch
Building RL agents that meta-learn their own learning algorithm. Currently pursuing a PhD in AI at IDSIA with Jürgen Schmidhuber. Previous DeepMind intern.
Louis Kirsch
This is implementation of AlexNet(2012) with 3D Convolution on TensorFlow (AlexNet 3D).

AlexNet_3dConv TensorFlow implementation of AlexNet(2012) by Alex Krizhevsky, with 3D convolutiional layers. 3D AlexNet Network with a standart AlexNe

Denis Timonin 41 Jan 16, 2022
Show-attend-and-tell - TensorFlow Implementation of "Show, Attend and Tell"

Show, Attend and Tell Update (December 2, 2016) TensorFlow implementation of Show, Attend and Tell: Neural Image Caption Generation with Visual Attent

Yunjey Choi 902 Nov 29, 2022
SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data

SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data Au

14 Nov 28, 2022
UNet model with VGG11 encoder pre-trained on Kaggle Carvana dataset

TernausNet: U-Net with VGG11 Encoder Pre-Trained on ImageNet for Image Segmentation By Vladimir Iglovikov and Alexey Shvets Introduction TernausNet is

Vladimir Iglovikov 1k Dec 28, 2022
Episodic-memory - Ego4D Episodic Memory Benchmark

Ego4D Episodic Memory Benchmark EGO4D is the world's largest egocentric (first p

3 Feb 18, 2022
Code to accompany the paper "Finding Bipartite Components in Hypergraphs", which is published in NeurIPS'21.

Finding Bipartite Components in Hypergraphs This repository contains code to accompany the paper "Finding Bipartite Components in Hypergraphs", publis

Peter Macgregor 5 May 06, 2022
Lava-DL, but with PyTorch-Lightning flavour

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Sami BARCHID 4 Oct 31, 2022
chainladder - Property and Casualty Loss Reserving in Python

chainladder (python) chainladder - Property and Casualty Loss Reserving in Python This package gets inspiration from the popular R ChainLadder package

Casualty Actuarial Society 130 Dec 07, 2022
CrossMLP - The repository offers the official implementation of our BMVC 2021 paper (oral) in PyTorch.

CrossMLP Cascaded Cross MLP-Mixer GANs for Cross-View Image Translation Bin Ren1, Hao Tang2, Nicu Sebe1. 1University of Trento, Italy, 2ETH, Switzerla

Bingoren 16 Jul 27, 2022
masscan + nmap + Finger

说明 个人根据使用习惯修改masnmap而来的一个小工具。调用masscan做全端口扫描,再调用nmap做服务识别,最后调用Finger做Web指纹识别。工具使用场景适合风险探测排查、众测等。 使用方法 安装依赖 pip3 install -r requirements.txt -i https:/

Ryan 3 Mar 25, 2022
🙄 Difficult algorithm, Simple code.

🎉TensorFlow2.0-Examples🎉! "Talk is cheap, show me the code." ----- Linus Torvalds Created by YunYang1994 This tutorial was designed for easily divin

1.7k Dec 25, 2022
Deep Reinforcement Learning for Multiplayer Online Battle Arena

MOBA_RL Deep Reinforcement Learning for Multiplayer Online Battle Arena Prerequisite Python 3 gym-derk Tensorflow 2.4.1 Dotaservice of TimZaman Seed R

Dohyeong Kim 32 Dec 18, 2022
StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation

StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation Demo video: CVPR 2021 Oral: Single Channel Manipulation: Localized or attribu

Zongze Wu 267 Dec 30, 2022
SatelliteNeRF - PyTorch-based Neural Radiance Fields adapted to satellite domain

SatelliteNeRF PyTorch-based Neural Radiance Fields adapted to satellite domain.

Kai Zhang 46 Nov 20, 2022
Colab notebook for openai/glide-text2im.

GLIDE text2im on Colab This repository provides a Colab notebook to produce images conditioned on text prompts with GLIDE [1]. Usage Run text2im.ipynb

Wok 19 Oct 19, 2022
[SDM 2022] Towards Similarity-Aware Time-Series Classification

SimTSC This is the PyTorch implementation of SDM2022 paper Towards Similarity-Aware Time-Series Classification. We propose Similarity-Aware Time-Serie

Daochen Zha 49 Dec 27, 2022
The code for paper "Contrastive Spatio-Temporal Pretext Learning for Self-supervised Video Representation" which is accepted by AAAI 2022

Contrastive Spatio Temporal Pretext Learning for Self-supervised Video Representation (AAAI 2022) The code for paper "Contrastive Spatio-Temporal Pret

8 Jun 30, 2022
Megaverse is a new 3D simulation platform for reinforcement learning and embodied AI research

Megaverse Megaverse is a new 3D simulation platform for reinforcement learning and embodied AI research. The efficient design of the engine enables ph

Aleksei Petrenko 191 Dec 23, 2022
YOLOX Win10 Project

Introduction 这是一个用于Windows训练YOLOX的项目,相比于官方项目,做了一些适配和修改: 1、解决了Windows下import yolox失败,No such file or directory: 'xxx.xml'等路径问题 2、CUDA out of memory等显存不

5 Jun 08, 2022
Library to enable Bayesian active learning in your research or labeling work.

Bayesian Active Learning (BaaL) BaaL is an active learning library developed at ElementAI. This repository contains techniques and reusable components

ElementAI 687 Dec 25, 2022