Implementation of Nyström Self-attention, from the paper Nyströmformer

Overview

Nyström Attention

Implementation of Nyström Self-attention, from the paper Nyströmformer.

Yannic Kilcher video

Install

$ pip install nystrom-attention

Usage

import torch
from nystrom_attention import NystromAttention

attn = NystromAttention(
    dim = 512,
    dim_head = 64,
    heads = 8,
    num_landmarks = 256,    # number of landmarks
    pinv_iterations = 6,    # number of moore-penrose iterations for approximating pinverse. 6 was recommended by the paper
    residual = True         # whether to do an extra residual with the value or not. supposedly faster convergence if turned on
)

x = torch.randn(1, 16384, 512)
mask = torch.ones(1, 16384).bool()

attn(x, mask = mask) # (1, 16384, 512)

Nyströmformer, layers of Nyström attention

import torch
from nystrom_attention import Nystromformer

model = Nystromformer(
    dim = 512,
    dim_head = 64,
    heads = 8,
    depth = 6,
    num_landmarks = 256,
    pinv_iterations = 6
)

x = torch.randn(1, 16384, 512)
mask = torch.ones(1, 16384).bool()

model(x, mask = mask) # (1, 16384, 512)

You can also import it as Nyströmer if you wish

from nystrom_attention import Nystromer

Citations

@misc{xiong2021nystromformer,
    title   = {Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention},
    author  = {Yunyang Xiong and Zhanpeng Zeng and Rudrasis Chakraborty and Mingxing Tan and Glenn Fung and Yin Li and Vikas Singh},
    year    = {2021},
    eprint  = {2102.03902},
    archivePrefix = {arXiv},
    primaryClass = {cs.CL}
}
Comments
  • Clarification on masking

    Clarification on masking

    Given the dimensionality of the mask argument, (N, T), I'm assuming this is a boolean mask for masking out padding tokens. I created the following function to generate such a mask given an input tensor:

    def _create_pad_mask(self, x: torch.LongTensor) -> torch.BoolTensor:
        mask = torch.ones_like(x).to(torch.bool)
        mask[x==0] = False
        return mask
    

    where 0 is the padding token, setting positions to False so not to attend to them.

    However, I am unsure how to apply a causal mask to the attention layers so to prevent my decoder from accessing future elements. I couldn't see an example of this in the full Nystromformer module. How can I achieve this?

    For context, I am trying to apply the causal mask generated by the following function:

    def _create_causal_mask(self, x: torch.LongTensor) -> torch.FloatTensor:
        size = x.shape[1]
        mask = (torch.triu(torch.ones(size, size)) == 1).transpose(0, 1)
        mask = mask.float().masked_fill_(mask == 0, float('-inf')).masked_fill_(mask==1, 0.0)
        return mask
    

    One way I can think of is to set return_attn to True, apply the mask on the returned attention weights then matmul with the value tensor. But this has a few issues:

    • Having to return v
    • Computing the full attention matrix (I think), defeating the entire point of linear attention
    • Needlessly calculating out only to discard it.

    Is this just a limitation of Nystrom attention? Or am I overlooking something obvious?

    Thanks

    opened by vvvm23 3
  • Possible bug with padding

    Possible bug with padding

    Hey there,

    I was going through the code and I noticed the following, which I found curious.

    In Line 75, you pad the input tensor to a multiple of num_landmarks from the front:

    x = F.pad(x, (0, 0, padding, 0), value = 0)
    

    In Line 144 you trim the extra padding elements you inserted in the output tensor from the end.

    out = out[:, :n]
    

    Am I not getting something, or should we be removing the front elements of out?

    out = out[:, out.size(1) - n:]
    
    opened by georgepar 2
  • Nystrom for Image processing

    Nystrom for Image processing

    thank you for sharing the wondeful code. I am working on image processing and wanted to try your code for the same. I have 2 doubts:

    1. How to select residual_conv_kernel? I could not find any details for the same. also, it is enabled by a flag. When should we enable it and when to disable it?
    2. Is there any guideline for deciding num_landmarks for image processing task?

    Thanks

    opened by paragon1234 1
  • Error when mask is of the same size as that of the input X

    Error when mask is of the same size as that of the input X

    Hi,

    First of all, thank you for putting such an easy to use implementation on GitHub. I'm trying to incorporate the nystrom attention into a legacy codebase, it previously used to provide the input X and the mask (off the same dimensions as X) to a Multi headed Attention Layer.

    When I'm trying to integrate nystrom attention with it, it runs alright without the mask. But, when I pass the mask alongside it, it throws einops rearrange error.

    Sorry, if this is a very basic question, but how would you recommend I deal with handling 3D mask (same dimensions as the size of input) in the codebase.

    Best, VB

    opened by Vaibhavs10 1
  • ViewBackward inplace deprecation warning

    ViewBackward inplace deprecation warning

    Hello again,

    The following code results in a UserWarning in PyTorch 1.8.1.

    In [1]: from nystrom_attention.nystrom_attention import NystromAttention
    
    In [2]: import torch
    
    In [3]: attn = NystromAttention(256)
    
    In [4]: x = torch.randn(1, 8192, 256)
    
    In [5]: attn(x)
    /home/alex/.tmp/nystrom-attention/nystrom_attention/nystrom_attention.py:91: UserWarning: Output 0 of ViewBackward is a view and is being modified inplace. This view is an output of a function that returns multiple views. Inplace operators on such views are being deprecated and will be forbidden starting from version 1.8. Consider using `unsafe_` version of the function that produced this view or don't modify this view inplace. (Triggered internally at  ../torch/csrc/autograd/variable.cpp:547.)
      q *= self.scale
    Out[5]:
    tensor([[[-0.0449, -0.1726,  0.1409,  ...,  0.0127,  0.2287, -0.2437],
             [-0.1132,  0.3229, -0.1279,  ...,  0.0084, -0.3307, -0.2351],
             [ 0.0361,  0.1013,  0.0828,  ...,  0.1045, -0.1627,  0.0736],
             ...,
             [ 0.0018,  0.1385, -0.1716,  ..., -0.0366, -0.0682,  0.0241],
             [ 0.1497,  0.0149, -0.0020,  ..., -0.0352, -0.1126,  0.0193],
             [ 0.1341,  0.0077,  0.1627,  ..., -0.0363,  0.1057, -0.2071]]],
           grad_fn=<SliceBackward>)
    

    Not a huge issue, but worth mentioning

    opened by vvvm23 1
  • Relative position encoding

    Relative position encoding

    Similar to the question raised for the performer architecture , is it possible to implement a relative position encoding given the methodology in which attention is calculated?

    opened by jdcla 1
  • How can we implement

    How can we implement "batch_first" in Nystrom attention?

    Hi,

    Thanks a lot for implementing the nystromformer attention algorithm! Very nice job!

    I am wondering whether it is feasible to add the "batch_first" option in the nystrom attention algorithm? This allow the algorithm to be integrated in the existing pytorch transformer encoder architecture.

    opened by mark0935git 0
  • x-transformers

    x-transformers

    Hi @lucidrains - just wondering if we can plug in Nystrom Attention with x-transformers?

    I've been plugging in Vision Transformers with X-transformers but am wondering if its possible to have a Nystrom transformer with x-transformer improvements to plug into a ViT?

    opened by robbohua 0
Owner
Phil Wang
Working with Attention. It's all we need.
Phil Wang
CondenseNet: Light weighted CNN for mobile devices

CondenseNets This repository contains the code (in PyTorch) for "CondenseNet: An Efficient DenseNet using Learned Group Convolutions" paper by Gao Hua

Shichen Liu 690 Nov 30, 2022
Trading environnement for RL agents, backtesting and training.

TradzQAI Trading environnement for RL agents, backtesting and training. Live session with coinbasepro-python is finaly arrived ! Available sessions: L

Tony Denion 164 Oct 30, 2022
A tensorflow implementation of Fully Convolutional Networks For Semantic Segmentation

##A tensorflow implementation of Fully Convolutional Networks For Semantic Segmentation. #USAGE To run the trained classifier on some images: python w

Alex Seewald 13 Nov 17, 2022
GAT - Graph Attention Network (PyTorch) 💻 + graphs + 📣 = ❤️

GAT - Graph Attention Network (PyTorch) 💻 + graphs + 📣 = ❤️ This repo contains a PyTorch implementation of the original GAT paper ( 🔗 Veličković et

Aleksa Gordić 1.9k Jan 09, 2023
Hitters Linear Regression - Hitters Linear Regression With Python

Hitters_Linear_Regression Kullanacağımız veri seti Carnegie Mellon Üniversitesi'

AyseBuyukcelik 2 Jan 26, 2022
Statsmodels: statistical modeling and econometrics in Python

About statsmodels statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics an

statsmodels 8.1k Jan 02, 2023
A Flexible Generative Framework for Graph-based Semi-supervised Learning (NeurIPS 2019)

G3NN This repo provides a pytorch implementation for the 4 instantiations of the flexible generative framework as described in the following paper: A

Jiaqi Ma 14 Oct 11, 2022
TensorFlow Tutorial and Examples for Beginners (support TF v1 & v2)

TensorFlow Examples This tutorial was designed for easily diving into TensorFlow, through examples. For readability, it includes both notebooks and so

Aymeric Damien 42.5k Jan 08, 2023
Code for paper: Towards Tokenized Human Dynamics Representation

Video Tokneization Codebase for video tokenization, based on our paper Towards Tokenized Human Dynamics Representation. Prerequisites (tested under Py

Kenneth Li 20 May 31, 2022
Python periodic table module

elemenpy Hello! elements.py is a small Python periodic table module that is used for calling certain information about an element. Installation Instal

Eric Cheng 2 Dec 27, 2021
GPU Accelerated Non-rigid ICP for surface registration

GPU Accelerated Non-rigid ICP for surface registration Introduction Preivous Non-rigid ICP algorithm is usually implemented on CPU, and needs to solve

Haozhe Wu 144 Jan 04, 2023
PECOS - Prediction for Enormous and Correlated Spaces

PECOS - Predictions for Enormous and Correlated Output Spaces PECOS is a versatile and modular machine learning (ML) framework for fast learning and i

Amazon 387 Jan 04, 2023
Compute FID scores with PyTorch.

FID score for PyTorch This is a port of the official implementation of Fréchet Inception Distance to PyTorch. See https://github.com/bioinf-jku/TTUR f

2.1k Jan 06, 2023
Trained on Simulated Data, Tested in the Real World

Trained on Simulated Data, Tested in the Real World

livox 43 Nov 18, 2022
《Rethinking Sptil Dimensions of Vision Trnsformers》(2021)

Rethinking Spatial Dimensions of Vision Transformers Byeongho Heo, Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Junsuk Choe, Seong Joon Oh | Paper NAVER

NAVER AI 224 Dec 27, 2022
[EMNLP 2021] Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training

RoSTER The source code used for Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training, p

Yu Meng 60 Dec 30, 2022
Introducing neural networks to predict stock prices

IntroNeuralNetworks in Python: A Template Project IntroNeuralNetworks is a project that introduces neural networks and illustrates an example of how o

Vivek Palaniappan 637 Jan 04, 2023
Implementation of the Paper: "Parameterized Hypercomplex Graph Neural Networks for Graph Classification" by Tuan Le, Marco Bertolini, Frank Noé and Djork-Arné Clevert

Parameterized Hypercomplex Graph Neural Networks (PHC-GNNs) PHC-GNNs (Le et al., 2021): https://arxiv.org/abs/2103.16584 PHM Linear Layer Illustration

Bayer AG 26 Aug 11, 2022
Learning to See by Looking at Noise

Learning to See by Looking at Noise This is the official implementation of Learning to See by Looking at Noise. In this work, we investigate a suite o

Manel Baradad Jurjo 82 Dec 24, 2022
A tool for making map images from OpenTTD save games

OpenTTD Surveyor A tool for making map images from OpenTTD save games. This is not part of the main OpenTTD codebase, nor is it ever intended to be pa

Aidan Randle-Conde 9 Feb 15, 2022