Fully convolutional deep neural network to remove transparent overlays from images

Overview

Warning! The architecture used in this project does not generalize well. You may want to check https://dmitryulyanov.github.io/deep_image_prior. This inpainting technique will likely give you better results.

Fully convolutional watermark removal attack

Deep learning architecture to remove transparent overlays from images.

example

Top: left is with watermark, middle is reconstruction and right is the mask the algo predicts (the neural net was never trained using text or this image)

Bottom: Pascal dataset image reconstructions. When the watermarked area is saturated, the reconstruction tends to produce a gray color.

Design choices

At train time, I generate a mask. It is a rectangle with randomly generated parameters (height, width, opacity, black/white, rotation). The mask is applied to a picture and the network is trained to find what was added. The loss is abs(prediction, image_perturbations)**1/2. It is not on the entire picture. An area around the mask is used to make the problem more tractable.

The network architecture does not down-sample the image. The prediction with a down-sampling network were not accurate enough. To have a large enough receptive field and not blow up the compute, I use dilated convolution. So concretely, I have a densenet style block, a bunch of dilated convolutions and final convolution to output a picture (3 channels). I did not spend much time doing hyper-parameters optimization. There's room to get better results using the current architecture.

Limitations: this architectures does not generalize to watermarks that are too different from the one generated with create_mask and it produces decent results only when the overlay is applied in an additive fashion.

Usage

This project uses Tensorflow. Install packages withpip install -r requirements.txt

You will need the jpeg library to compile Pillow from source: sudo apt-get install libjpeg-dev zlib1g-dev

You will also need to download the pascal dataset (used by default) from http://host.robots.ox.ac.uk/pascal/VOC/voc2012/ or CIFAR10 python version from https://www.cs.toronto.edu/~kriz/cifar.html (use flag --dataset=dataset_cifar). Make sure the extract the pascal dataset under a directory called data. The project directory should then have the directory cifar-10-batches-py and/or data/VOCdevkit/VOC2012/JPEGImages. If you want to use your own images, place them in data/VOCdevkit/VOC2012/JPEGImages/.

To train the network python3 watermarks.py --logdir=save/. It starts to produce some interesting results after 12000 steps.

To use the network for inference, you can run python watermarks.py --image assets/cat.png --selection assets/cat-selection.png this will create a new image output.png.

Pretrained weights

Here you can find the weights: https://github.com/marcbelmont/cnn-watermark-removal/files/1594328/data.zip put them in /tmp/

Owner
Marc Belmont
Marc Belmont
This is an early in-development version of training CLIP models with hivemind.

A transformer that does not hog your GPU memory This is an early in-development codebase: if you want a stable and documented hivemind codebase, look

<a href=[email protected]"> 4 Nov 06, 2022
code for "Feature Importance-aware Transferable Adversarial Attacks"

Feature Importance-aware Attack(FIA) This repository contains the code for the paper: Feature Importance-aware Transferable Adversarial Attacks (ICCV

Hengchang Guo 44 Nov 24, 2022
Implementation of Kronecker Attention in Pytorch

Kronecker Attention Pytorch Implementation of Kronecker Attention in Pytorch. Results look less than stellar, but if someone found some context where

Phil Wang 16 May 06, 2022
Implementation of Axial attention - attending to multi-dimensional data efficiently

Axial Attention Implementation of Axial attention in Pytorch. A simple but powerful technique to attend to multi-dimensional data efficiently. It has

Phil Wang 250 Dec 25, 2022
Code for pre-training CharacterBERT models (as well as BERT models).

Pre-training CharacterBERT (and BERT) This is a repository for pre-training BERT and CharacterBERT. DISCLAIMER: The code was largely adapted from an o

Hicham EL BOUKKOURI 31 Dec 05, 2022
J.A.R.V.I.S is an AI virtual assistant made in python.

J.A.R.V.I.S is an AI virtual assistant made in python. Running JARVIS Without Python To run JARVIS without python: 1. Head over to our installation pa

somePythonProgrammer 16 Dec 29, 2022
[SDM 2022] Towards Similarity-Aware Time-Series Classification

SimTSC This is the PyTorch implementation of SDM2022 paper Towards Similarity-Aware Time-Series Classification. We propose Similarity-Aware Time-Serie

Daochen Zha 49 Dec 27, 2022
A toy project using OpenCV and PyMunk

A toy project using OpenCV, PyMunk and Mediapipe the source code for my LindkedIn post It's just a toy project and I didn't write a documentation yet,

Amirabbas Asadi 82 Oct 28, 2022
The official homepage of the (outdated) COCO-Stuff 10K dataset.

COCO-Stuff 10K dataset v1.1 (outdated) Holger Caesar, Jasper Uijlings, Vittorio Ferrari Overview Welcome to official homepage of the COCO-Stuff [1] da

Holger Caesar 263 Dec 11, 2022
Code in conjunction with the publication 'Contrastive Representation Learning for Hand Shape Estimation'

HanCo Dataset & Contrastive Representation Learning for Hand Shape Estimation Code in conjunction with the publication: Contrastive Representation Lea

Computer Vision Group, Albert-Ludwigs-Universität Freiburg 38 Dec 13, 2022
Multi Agent Path Finding Algorithms

MATP-solver Simulator collision check path step random initial states or given states Traditional method Seperate A* algorithem Confict-based Search S

30 Dec 12, 2022
Aalto-cs-msc-theses - Listing of M.Sc. Theses of the Department of Computer Science at Aalto University

Aalto-CS-MSc-Theses Listing of M.Sc. Theses of the Department of Computer Scienc

Jorma Laaksonen 3 Jan 27, 2022
CLIPImageClassifier wraps clip image model from transformers

CLIPImageClassifier CLIPImageClassifier wraps clip image model from transformers. CLIPImageClassifier is initialized with the argument classes, these

Jina AI 6 Sep 12, 2022
「PyTorch Implementation of AnimeGANv2」を用いて、生成した顔画像を元の画像に上書きするデモ

AnimeGANv2-Face-Overlay-Demo PyTorch Implementation of AnimeGANv2を用いて、生成した顔画像を元の画像に上書きするデモです。

KazuhitoTakahashi 21 Oct 18, 2022
Synthetic structured data generators

Join us on What is Synthetic Data? Synthetic data is artificially generated data that is not collected from real world events. It replicates the stati

YData 850 Jan 07, 2023
A tiny, friendly, strong baseline code for Person-reID (based on pytorch).

Pytorch ReID Strong, Small, Friendly A tiny, friendly, strong baseline code for Person-reID (based on pytorch). Strong. It is consistent with the new

Zhedong Zheng 3.5k Jan 08, 2023
Selective Wavelet Attention Learning for Single Image Deraining

SWAL Code for Paper "Selective Wavelet Attention Learning for Single Image Deraining" Prerequisites Python 3 PyTorch Models We provide the models trai

Bobo 9 Jun 17, 2022
🔥🔥High-Performance Face Recognition Library on PaddlePaddle & PyTorch🔥🔥

face.evoLVe: High-Performance Face Recognition Library based on PaddlePaddle & PyTorch Evolve to be more comprehensive, effective and efficient for fa

Zhao Jian 3.1k Jan 02, 2023
This repository contains several image-to-image translation models, whcih were tested for RGB to NIR image generation. The models are Pix2Pix, Pix2PixHD, CycleGAN and PointWise.

RGB2NIR_Experimental This repository contains several image-to-image translation models, whcih were tested for RGB to NIR image generation. The models

5 Jan 04, 2023
Source code for the BMVC-2021 paper "SimReg: Regression as a Simple Yet Effective Tool for Self-supervised Knowledge Distillation".

SimReg: A Simple Regression Based Framework for Self-supervised Knowledge Distillation Source code for the paper "SimReg: Regression as a Simple Yet E

9 Oct 15, 2022