Pytorch implementations of popular off-policy multi-agent reinforcement learning algorithms, including QMix, VDN, MADDPG, and MATD3.

Overview

Off-Policy Multi-Agent Reinforcement Learning (MARL) Algorithms

This repository contains implementations of various off-policy multi-agent reinforcement learning (MARL) algorithms.

Authors: Akash Velu and Chao Yu

Algorithms supported:

  • MADDPG (MLP and RNN)
  • MATD3 (MLP and RNN)
  • QMIX (MLP and RNN)
  • VDN (MLP and RNN)

Environments supported:

1. Usage

WARNING #1: by default all experiments assume a shared policy by all agents i.e. there is one neural network shared by all agents

WARNING #2: only QMIX and MADDPG are thoroughly tested; however,our VDN and MATD3 implementations make small modifications to QMIX and MADDPG, respectively. We display results using our implementation here.

All core code is located within the offpolicy folder. The algorithms/ subfolder contains algorithm-specific code for all methods. RMADDPG and RMATD3 refer to RNN implementationso of MADDPG and MATD3, and mQMIX and mVDN refer to MLP implementations of QMIX and VDN. We additionally support prioritized experience replay (PER).

  • The envs/ subfolder contains environment wrapper implementations for the MPEs and SMAC.

  • Code to perform training rollouts and policy updates are contained within the runner/ folder - there is a runner for each environment.

  • Executable scripts for training with default hyperparameters can be found in the scripts/ folder. The files are named in the following manner: train_algo_environment.sh. Within each file, the map name (in the case of SMAC and the MPEs) can be altered.

  • Python training scripts for each environment can be found in the scripts/train/ folder.

  • The config.py file contains relevant hyperparameter and env settings. Most hyperparameters are defaulted to the ones used in the paper; however, please refer to the appendix for a full list of hyperparameters used.

2. Installation

Here we give an example installation on CUDA == 10.1. For non-GPU & other CUDA version installation, please refer to the PyTorch website.

# create conda environment
conda create -n marl python==3.6.1
conda activate marl
pip install torch==1.5.1+cu101 torchvision==0.6.1+cu101 -f https://download.pytorch.org/whl/torch_stable.html
# install on-policy package
cd on-policy
pip install -e .

Even though we provide requirement.txt, it may have redundancy. We recommend that the user try to install other required packages by running the code and finding which required package hasn't installed yet.

2.1 Install StarCraftII 4.10

unzip SC2.4.10.zip
# password is iagreetotheeula
echo "export SC2PATH=~/StarCraftII/" > ~/.bashrc

2.2 Install MPE

# install this package first
pip install seaborn

There are 3 Cooperative scenarios in MPE:

  • simple_spread
  • simple_speaker_listener, which is 'Comm' scenario in paper
  • simple_reference

3.Train

Here we use train_mpe_maddpg.sh as an example:

cd offpolicy/scripts
chmod +x ./train_mpe_maddpg.sh
./train_mpe_maddpg.sh

Local results are stored in subfold scripts/results. Note that we use Weights & Bias as the default visualization platform; to use Weights & Bias, please register and login to the platform first. More instructions for using Weights&Bias can be found in the official documentation. Adding the --use_wandb in command line or in the .sh file will use Tensorboard instead of Weights & Biases.

4. Results

Results for the performance of RMADDPG and QMIX on the Particle Envs and QMIX in SMAC are depicted here. These results are obtained using a normal (not prioitized) replay buffer.

Owner
This is a benchmark of popular multi-agent reinforcement learning algorithms & environments
Reference models and tools for Cloud TPUs.

Cloud TPUs This repository is a collection of reference models and tools used with Cloud TPUs. The fastest way to get started training a model on a Cl

5k Jan 05, 2023
Learning To Have An Ear For Face Super-Resolution

Learning To Have An Ear For Face Super-Resolution [Project Page] This repository contains demo code of our CVPR2020 paper. Training and evaluation on

50 Nov 16, 2022
Depth image based mouse cursor visual haptic

Depth image based mouse cursor visual haptic How to run it. Install pyqt5. Install python modules pip install Pillow pip install numpy For illustrati

Xiong Jie 17 Dec 20, 2022
BLEND: A Fast, Memory-Efficient, and Accurate Mechanism to Find Fuzzy Seed Matches

BLEND is a mechanism that can efficiently find fuzzy seed matches between sequences to significantly improve the performance and accuracy while reducing the memory space usage of two important applic

SAFARI Research Group at ETH Zurich and Carnegie Mellon University 19 Dec 26, 2022
🔥 TensorFlow Code for technical report: "YOLOv3: An Incremental Improvement"

🆕 Are you looking for a new YOLOv3 implemented by TF2.0 ? If you hate the fucking tensorflow1.x very much, no worries! I have implemented a new YOLOv

3.6k Dec 26, 2022
Explore the Expression: Facial Expression Generation using Auxiliary Classifier Generative Adversarial Network

Explore the Expression: Facial Expression Generation using Auxiliary Classifier Generative Adversarial Network This is the official implementation of

azad 2 Jul 09, 2022
Official Implementation of DDOD (Disentangle your Dense Object Detector), ACM MM2021

Disentangle Your Dense Object Detector This repo contains the supported code and configuration files to reproduce object detection results of Disentan

loveSnowBest 51 Jan 07, 2023
A embed able annotation tool for end to end cross document co-reference

CoRefi CoRefi is an emebedable web component and stand alone suite for exaughstive Within Document and Cross Document Coreference Anntoation. For a de

PythicCoder 39 Dec 12, 2022
Pytorch implementation of Learning Rate Dropout.

Learning-Rate-Dropout Pytorch implementation of Learning Rate Dropout. Paper Link: https://arxiv.org/pdf/1912.00144.pdf Train ResNet-34 for Cifar10: r

42 Nov 25, 2022
[CVPRW 2021] Code for Region-Adaptive Deformable Network for Image Quality Assessment

RADN [CVPRW 2021] Code for Region-Adaptive Deformable Network for Image Quality Assessment [Paper on arXiv] Overview Update [2021/5/7] add codes for W

IIGROUP 53 Dec 28, 2022
95.47% on CIFAR10 with PyTorch

Train CIFAR10 with PyTorch I'm playing with PyTorch on the CIFAR10 dataset. Prerequisites Python 3.6+ PyTorch 1.0+ Training # Start training with: py

5k Dec 30, 2022
RADIal is available now! Check the download section

Latest news: RADIal is available now! Check the download section. However, because we are currently working on the data anonymization, we provide for

valeo.ai 55 Jan 03, 2023
A distributed, plug-n-play algorithm for multi-robot applications with a priori non-computable objective functions

A distributed, plug-n-play algorithm for multi-robot applications with a priori non-computable objective functions Kapoutsis, A.C., Chatzichristofis,

Athanasios Ch. Kapoutsis 5 Oct 15, 2022
Compositional and Parameter-Efficient Representations for Large Knowledge Graphs

NodePiece - Compositional and Parameter-Efficient Representations for Large Knowledge Graphs NodePiece is a "tokenizer" for reducing entity vocabulary

Michael Galkin 107 Jan 04, 2023
Yolo ros - YOLO-ROS for HUAWEI ATLAS200

YOLO-ROS YOLO-ROS for NVIDIA YOLO-ROS for HUAWEI ATLAS200, please checkout for b

ChrisLiu 5 Oct 18, 2022
Fast and scalable uncertainty quantification for neural molecular property prediction, accelerated optimization, and guided virtual screening.

Evidential Deep Learning for Guided Molecular Property Prediction and Discovery Ava Soleimany*, Alexander Amini*, Samuel Goldman*, Daniela Rus, Sangee

Alexander Amini 75 Dec 15, 2022
A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021)

A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021) This repository contains the official implemen

81 Dec 14, 2022
Simple Tensorflow implementation of Toward Spatially Unbiased Generative Models (ICCV 2021)

Spatial unbiased GANs — Simple TensorFlow Implementation [Paper] : Toward Spatially Unbiased Generative Models (ICCV 2021) Abstract Recent image gener

Junho Kim 16 Apr 15, 2022
Machine Learning with JAX Tutorials

The purpose of this repo is to make it easy to get started with JAX. It contains my "Machine Learning with JAX" series of tutorials (YouTube videos and Jupyter Notebooks) as well as the content I fou

Aleksa Gordić 372 Dec 28, 2022
Experiments with Fourier layers on simulation data.

Factorized Fourier Neural Operators This repository contains the code to reproduce the results in our NeurIPS 2021 ML4PS workshop paper, Factorized Fo

Alasdair Tran 57 Dec 25, 2022