Pytorch implementations of popular off-policy multi-agent reinforcement learning algorithms, including QMix, VDN, MADDPG, and MATD3.

Overview

Off-Policy Multi-Agent Reinforcement Learning (MARL) Algorithms

This repository contains implementations of various off-policy multi-agent reinforcement learning (MARL) algorithms.

Authors: Akash Velu and Chao Yu

Algorithms supported:

  • MADDPG (MLP and RNN)
  • MATD3 (MLP and RNN)
  • QMIX (MLP and RNN)
  • VDN (MLP and RNN)

Environments supported:

1. Usage

WARNING #1: by default all experiments assume a shared policy by all agents i.e. there is one neural network shared by all agents

WARNING #2: only QMIX and MADDPG are thoroughly tested; however,our VDN and MATD3 implementations make small modifications to QMIX and MADDPG, respectively. We display results using our implementation here.

All core code is located within the offpolicy folder. The algorithms/ subfolder contains algorithm-specific code for all methods. RMADDPG and RMATD3 refer to RNN implementationso of MADDPG and MATD3, and mQMIX and mVDN refer to MLP implementations of QMIX and VDN. We additionally support prioritized experience replay (PER).

  • The envs/ subfolder contains environment wrapper implementations for the MPEs and SMAC.

  • Code to perform training rollouts and policy updates are contained within the runner/ folder - there is a runner for each environment.

  • Executable scripts for training with default hyperparameters can be found in the scripts/ folder. The files are named in the following manner: train_algo_environment.sh. Within each file, the map name (in the case of SMAC and the MPEs) can be altered.

  • Python training scripts for each environment can be found in the scripts/train/ folder.

  • The config.py file contains relevant hyperparameter and env settings. Most hyperparameters are defaulted to the ones used in the paper; however, please refer to the appendix for a full list of hyperparameters used.

2. Installation

Here we give an example installation on CUDA == 10.1. For non-GPU & other CUDA version installation, please refer to the PyTorch website.

# create conda environment
conda create -n marl python==3.6.1
conda activate marl
pip install torch==1.5.1+cu101 torchvision==0.6.1+cu101 -f https://download.pytorch.org/whl/torch_stable.html
# install on-policy package
cd on-policy
pip install -e .

Even though we provide requirement.txt, it may have redundancy. We recommend that the user try to install other required packages by running the code and finding which required package hasn't installed yet.

2.1 Install StarCraftII 4.10

unzip SC2.4.10.zip
# password is iagreetotheeula
echo "export SC2PATH=~/StarCraftII/" > ~/.bashrc

2.2 Install MPE

# install this package first
pip install seaborn

There are 3 Cooperative scenarios in MPE:

  • simple_spread
  • simple_speaker_listener, which is 'Comm' scenario in paper
  • simple_reference

3.Train

Here we use train_mpe_maddpg.sh as an example:

cd offpolicy/scripts
chmod +x ./train_mpe_maddpg.sh
./train_mpe_maddpg.sh

Local results are stored in subfold scripts/results. Note that we use Weights & Bias as the default visualization platform; to use Weights & Bias, please register and login to the platform first. More instructions for using Weights&Bias can be found in the official documentation. Adding the --use_wandb in command line or in the .sh file will use Tensorboard instead of Weights & Biases.

4. Results

Results for the performance of RMADDPG and QMIX on the Particle Envs and QMIX in SMAC are depicted here. These results are obtained using a normal (not prioitized) replay buffer.

Owner
This is a benchmark of popular multi-agent reinforcement learning algorithms & environments
TensorFlow implementation of "TokenLearner: What Can 8 Learned Tokens Do for Images and Videos?"

TokenLearner: What Can 8 Learned Tokens Do for Images and Videos? Source: Improving Vision Transformer Efficiency and Accuracy by Learning to Tokenize

Aritra Roy Gosthipaty 23 Dec 24, 2022
Adversarial Framework for (non-) Parametric Image Stylisation Mosaics

Fully Adversarial Mosaics (FAMOS) Pytorch implementation of the paper "Copy the Old or Paint Anew? An Adversarial Framework for (non-) Parametric Imag

Zalando Research 120 Dec 24, 2022
Efficient Two-Step Networks for Temporal Action Segmentation (Neurocomputing 2021)

Efficient Two-Step Networks for Temporal Action Segmentation This repository provides a PyTorch implementation of the paper Efficient Two-Step Network

8 Apr 16, 2022
StyleSwin: Transformer-based GAN for High-resolution Image Generation

StyleSwin This repo is the official implementation of "StyleSwin: Transformer-based GAN for High-resolution Image Generation". By Bowen Zhang, Shuyang

Microsoft 349 Dec 28, 2022
BlueFog Tutorials

BlueFog Tutorials Welcome to the BlueFog tutorials! In this repository, we've put together a collection of awesome Jupyter notebooks. These notebooks

4 Oct 27, 2021
Pytorch Implementation of Various Point Transformers

Pytorch Implementation of Various Point Transformers Recently, various methods applied transformers to point clouds: PCT: Point Cloud Transformer (Men

Neil You 434 Dec 30, 2022
R3Det based on mmdet 2.19.0

R3Det: Refined Single-Stage Detector with Feature Refinement for Rotating Object Installation # install mmdetection first if you haven't installed it

SJTU-Thinklab-Det 38 Dec 15, 2022
iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis

iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis Andreas Bl

CompVis Heidelberg 36 Dec 25, 2022
[CVPR 2021] Pytorch implementation of Hijack-GAN: Unintended-Use of Pretrained, Black-Box GANs

Hijack-GAN: Unintended-Use of Pretrained, Black-Box GANs In this work, we propose a framework HijackGAN, which enables non-linear latent space travers

Hui-Po Wang 46 Sep 05, 2022
Official repository of my book: "Deep Learning with PyTorch Step-by-Step: A Beginner's Guide"

This is the official repository of my book "Deep Learning with PyTorch Step-by-Step". Here you will find one Jupyter notebook for every chapter in the book.

Daniel Voigt Godoy 340 Jan 01, 2023
Matthew Colbrook 1 Apr 08, 2022
Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment (ICCV2021)

Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment This is a pytorch project for the paper Seeing Dynamic Scene i

DV Lab 21 Nov 28, 2022
Code for "LASR: Learning Articulated Shape Reconstruction from a Monocular Video". CVPR 2021.

LASR Installation Build with conda conda env create -f lasr.yml conda activate lasr # install softras cd third_party/softras; python setup.py install;

Google 157 Dec 26, 2022
A Model for Natural Language Attack on Text Classification and Inference

TextFooler A Model for Natural Language Attack on Text Classification and Inference This is the source code for the paper: Jin, Di, et al. "Is BERT Re

Di Jin 418 Dec 16, 2022
The implementation of the paper "A Deep Feature Aggregation Network for Accurate Indoor Camera Localization".

A Deep Feature Aggregation Network for Accurate Indoor Camera Localization This is the PyTorch implementation of our paper "A Deep Feature Aggregation

9 Dec 09, 2022
x-transformers-paddle 2.x version

x-transformers-paddle x-transformers-paddle 2.x version paddle 2.x版本 https://github.com/lucidrains/x-transformers 。 requirements paddlepaddle-gpu==2.2

yujun 7 Dec 08, 2022
StarGAN v2 - Official PyTorch Implementation (CVPR 2020)

StarGAN v2 - Official PyTorch Implementation StarGAN v2: Diverse Image Synthesis for Multiple Domains Yunjey Choi*, Youngjung Uh*, Jaejun Yoo*, Jung-W

Clova AI Research 3.1k Jan 09, 2023
Official Pytorch Code for the paper TransWeather

TransWeather Official Code for the paper TransWeather, Arxiv Tech Report 2021 Paper | Website About this repo: This repo hosts the implentation code,

Jeya Maria Jose 81 Dec 30, 2022
Official code for paper "Optimization for Oriented Object Detection via Representation Invariance Loss".

Optimization for Oriented Object Detection via Representation Invariance Loss By Qi Ming, Zhiqiang Zhou, Lingjuan Miao, Xue Yang, and Yunpeng Dong. Th

ming71 56 Nov 28, 2022
Kaggle | 9th place (part of) solution for the Bristol-Myers Squibb – Molecular Translation challenge

Part of the 9th place solution for the Bristol-Myers Squibb – Molecular Translation challenge translating images containing chemical structures into I

Erdene-Ochir Tuguldur 22 Nov 30, 2022