How to use COG's (Cloud optimized GeoTIFFs) with Rasterio

Related tags

Geolocationcog_how_to
Overview

How to use COG's (Cloud optimized GeoTIFFs) with Rasterio

According to Cogeo.org:

A Cloud Opdtimized GeoTIFF (COG) is a regular GeoTIFF file, aimed at being hosted on a HTTP file server, with an internal organization that enables more efficient workflows on the cloud. It does this by leveraging the ability of clients issuing ​HTTP GET range requests to ask for just the parts of a file they need.

Think about the following case: You want to analyze the NDVI of your local 1km² park by using Sentinel 2 geoTIFF imaginery. Sentinel 2 satellite images cover very big regions. In the past, you had to download the whole file (100mb +) for band 4 (red) and the whole file for band 8 (near infrared) even that in fact, you need only a small portion of the data. That's why COG's (cloud optimized geoTIFFs) have been invented. With them, we ask the server to only send specific bytes of the image.

Cloud optimized geoTIFFs offer:

  • efficient imaginery data access
  • reduced duplication of data
  • legacy compatibility

COG's can be read just like normal geoTIFFs. In our example, we will use an AOI (area of interest), that is described in a geoJSON. We will also use sat-search to query the latest available Sentinel-2 satellite imaginery for our specific location. Then we will use Rasterio to perform a range request to download only the parts of the files we need. We will also use Pyproj to perform neccessary coordinate transformations. The cloud optimized Sentinel 2 imaginery is hosted in a AWS S3 repository.

Install libraries (matplotlib optional)

pip install rasterio pyproj sat-search matplotlib

Import libraries

from satsearch import Search
from datetime import datetime, timedelta
from pyproj import Transformer
from json import load

import rasterio
from rasterio.features import bounds

First, we need to open our geoJSON file and extract the geometry. To create a geoJSON, you can go to geojson.io. Do not make a very large geoJSON (a good size is 1x1km²), otherwise you might get an error later.

file_path = "path/to/your/file.geojson"
with open(file_path,"r") as fp:
    file_content = load(fp)
geometry = file_content["features"][0]["geometry"]

We will query for images not older than 60 days that contain less than 20% clouds.

# search last 60 days
current_date = datetime.now()
date_60_days_ago = current_date - timedelta(days=60)
current_date = current_date.strftime("%Y-%m-%d")
date_60_days_ago = date_60_days_ago.strftime("%Y-%m-%d")

# only request images with cloudcover less than 20%
query = {
    "eo:cloud_cover": {
        "lt": 20
        }
    }
search = Search(
    url='https://earth-search.aws.element84.com/v0',
    intersects=geometry,
    datetime=date_60_days_ago + "/" + current_date,
    collections=['sentinel-s2-l2a-cogs'],
    query=query
    )        
# grep latest red && nir
items = search.items()
latest_data = items.dates()[-1]
red = items[0].asset('red')["href"]
nir = items[0].asset('nir')["href"]
print(f"Latest data found that intersects geometry: {latest_data}")
print(f"Url red band: {red}")
print(f"Url nir band: {nir}")

Now we got the URLs of the most recent Sentinel 2 imaginery for our region. In the next step, we need to calculate which pixels to query from our geoTIFF server. The satellite image comes with 10980 x 10980 pixels. Every pixel represents 10 meter ground resolution. In order to calculate which pixels fall into our area of interest, we need to reproject our geoJSON coordinates into pixel row/col. With the recent Rasterio versions, we can read COGs by passing a rasterio.windows.Window (that specifies which row/col to query) to the read function. Before we can query, we need to open a virtual file(urls of a hosted file):

for geotiff_file in [red, nir]:
    with rasterio.open(geotiff_file) as geo_fp:

Then, we calculate the bounding box around our geometry and use the pyproj.Transformer to transform our geoJSON coordinates (EPSG 4326) into Sentinel Sat's EPSG 32633 projection.

        bbox = bounds(geometry)
        coord_transformer = Transformer.from_crs("epsg:4326", geo_fp.crs) 
        # calculate pixels to be streamed in cog 
        coord_upper_left = coord_transformer.transform(bbox[3], bbox[0])
        coord_lower_right = coord_transformer.transform(bbox[1], bbox[2]) 

Now that we have the right coordinates, we can calculate from coordinates to pixels in our geoTIFF file using rasterio.

        pixel_upper_left = geo_fp.index(
            coord_upper_left[0], 
            coord_upper_left[1]
            )
        pixel_lower_right = geo_fp.index(
            coord_lower_right[0], 
            coord_lower_right[1]
            )
        
        for pixel in pixel_upper_left + pixel_lower_right:
            # If the pixel value is below 0, that means that
            # the bounds are not inside of our available dataset.
            if pixel < 0:
                print("Provided geometry extends available datafile.")
                print("Provide a smaller area of interest to get a result.")
                exit()

Now we are ready for the desired range request.

        # make http range request only for bytes in window
        window = rasterio.windows.Window.from_slices(
            (
            pixel_upper_left[0], 
            pixel_lower_right[0]
            ), 
            (
            pixel_upper_left[1], 
            pixel_lower_right[1]
            )
        )
        subset = geo_fp.read(1, window=window)

The subset object contains the desired data. We can access and vizualize it with:

        import matplotlib.pyplot as plt
        plt.imshow(subset, cmap="seismic")
        plt.colorbar()

red nir

I hope, I was able to show you how COG's work and that you are ready now to access your cloud optimized geoTIFF images in seconds compared to minutes in the past. Have a great day!

All together:

from satsearch import Search
from datetime import datetime, timedelta
from pyproj import Transformer
from json import load

import rasterio
from rasterio.features import bounds

file_path = "path/to/your/file.geojson"
with open(file_path,"r") as fp:
    file_content = load(fp)
geometry = file_content["features"][0]["geometry"]

# search last 60 days
current_date = datetime.now()
date_60_days_ago = current_date - timedelta(days=60)
current_date = current_date.strftime("%Y-%m-%d")
date_60_days_ago = date_60_days_ago.strftime("%Y-%m-%d")

# only request images with cloudcover less than 20%
query = {
    "eo:cloud_cover": {
        "lt": 20
        }
    }
search = Search(
    url='https://earth-search.aws.element84.com/v0',
    intersects=geometry,
    datetime=date_60_days_ago + "/" + current_date,
    collections=['sentinel-s2-l2a-cogs'],
    query=query
    )        
# grep latest red && nir
items = search.items()
latest_data = items.dates()[-1]
red = items[0].asset('red')["href"]
nir = items[0].asset('nir')["href"]
print(f"Latest data found that intersects geometry: {latest_data}")
print(f"Url red band: {red}")
print(f"Url nir band: {nir}")

for geotiff_file in [red, nir]:
    with rasterio.open(geotiff_file) as geo_fp:
        bbox = bounds(geometry)
        coord_transformer = Transformer.from_crs("epsg:4326", geo_fp.crs) 
        # calculate pixels to be streamed in cog 
        coord_upper_left = coord_transformer.transform(bbox[3], bbox[0])
        coord_lower_right = coord_transformer.transform(bbox[1], bbox[2]) 
        pixel_upper_left = geo_fp.index(
            coord_upper_left[0], 
            coord_upper_left[1]
            )
        pixel_lower_right = geo_fp.index(
            coord_lower_right[0], 
            coord_lower_right[1]
            )
        
        for pixel in pixel_upper_left + pixel_lower_right:
            # If the pixel value is below 0, that means that
            # the bounds are not inside of our available dataset.
            if pixel < 0:
                print("Provided geometry extends available datafile.")
                print("Provide a smaller area of interest to get a result.")
                exit()
        
        # make http range request only for bytes in window
        window = rasterio.windows.Window.from_slices(
            (
            pixel_upper_left[0], 
            pixel_lower_right[0]
            ), 
            (
            pixel_upper_left[1], 
            pixel_lower_right[1]
            )
        )
        subset = geo_fp.read(1, window=window)

        # vizualize
        import matplotlib.pyplot as plt
        plt.imshow(subset, cmap="seismic")
        plt.colorbar()
        plt.show()
Owner
Marvin Gabler
specialized in climate, data & risk | interested in nature, rockets and outer space | The earth's data for our world's future
Marvin Gabler
framework for large-scale SAR satellite data processing

pyroSAR A Python Framework for Large-Scale SAR Satellite Data Processing The pyroSAR package aims at providing a complete solution for the scalable or

John Truckenbrodt 389 Dec 21, 2022
Open GeoJSON data on geojson.io

geojsonio.py Open GeoJSON data on geojson.io from Python. geojsonio.py also contains a command line utility that is a Python port of geojsonio-cli. Us

Jacob Wasserman 114 Dec 21, 2022
Minimum Bounding Box of Geospatial data

BBOX Problem definition: The spatial data users often are required to obtain the coordinates of the minimum bounding box of vector and raster data in

Ali Khosravi Kazazi 1 Sep 08, 2022
Satellite imagery for dummies.

felicette Satellite imagery for dummies. What can you do with this tool? TL;DR: Generate JPEG earth imagery from coordinates/location name with public

Shivashis Padhi 1.8k Jan 03, 2023
Simulation and Parameter Estimation in Geophysics

Simulation and Parameter Estimation in Geophysics - A python package for simulation and gradient based parameter estimation in the context of geophysical applications.

SimPEG 390 Dec 15, 2022
Ingest and query genomic intervals from multiple BED files

Ingest and query genomic intervals from multiple BED files.

4 May 29, 2021
Histogram matching plugin for rasterio

rio-hist Histogram matching plugin for rasterio. Provides a CLI and python module for adjusting colors based on histogram matching in a variety of col

Mapbox 75 Sep 23, 2022
Helping data scientists better understand their datasets and models in text classification. With love from ServiceNow.

Azimuth, an open-source dataset and error analysis tool for text classification, with love from ServiceNow. Overview Azimuth is an open source applica

ServiceNow 145 Dec 23, 2022
A multi-page streamlit app for the geospatial community.

A multi-page streamlit app for the geospatial community.

Qiusheng Wu 522 Dec 30, 2022
Manipulation and analysis of geometric objects

Shapely Manipulation and analysis of geometric objects in the Cartesian plane. Shapely is a BSD-licensed Python package for manipulation and analysis

3.1k Jan 03, 2023
Color correction plugin for rasterio

rio-color A rasterio plugin for applying basic color-oriented image operations to geospatial rasters. Goals No heavy dependencies: rio-color is purpos

Mapbox 111 Nov 15, 2022
Earthengine-py-notebooks - A collection of 360+ Jupyter Python notebook examples for using Google Earth Engine with interactive mapping

earthengine-py-notebooks A collection of 360+ Jupyter Python notebook examples for using Google Earth Engine with interactive mapping Contact: Qiushen

Qiusheng Wu 1.1k Dec 29, 2022
A ready-to-use curated list of Spectral Indices for Remote Sensing applications.

A ready-to-use curated list of Spectral Indices for Remote Sensing applications. GitHub: https://github.com/davemlz/awesome-ee-spectral-indices Docume

David Montero Loaiza 488 Jan 03, 2023
An API built to format given addresses using Python and Flask.

An API built to format given addresses using Python and Flask. About The API returns properly formatted data, i.e. removing duplicate fields, distingu

1 Feb 27, 2022
Tools for the extraction of OpenStreetMap street network data

OSMnet Tools for the extraction of OpenStreetMap (OSM) street network data. Intended to be used in tandem with Pandana and UrbanAccess libraries to ex

Urban Data Science Toolkit 47 Sep 21, 2022
iNaturalist observations along hiking trails

This tool reads the route of a hike and generates a table of iNaturalist observations along the trails. It also shows the observations and the route of the hike on a map. Moreover, it saves waypoints

7 Nov 11, 2022
A Python interface between Earth Engine and xarray

eexarray A Python interface between Earth Engine and xarray Description eexarray was built to make processing gridded, mesoscale time series data quic

Aaron Zuspan 159 Dec 23, 2022
A ninja python package that unifies the Google Earth Engine ecosystem.

A Python package that unifies the Google Earth Engine ecosystem. EarthEngine.jl | rgee | rgee+ | eemont GitHub: https://github.com/r-earthengine/ee_ex

47 Dec 27, 2022
A Python package for delineating nested surface depressions from digital elevation data.

Welcome to the lidar package lidar is Python package for delineating the nested hierarchy of surface depressions in digital elevation models (DEMs). I

Qiusheng Wu 166 Jan 03, 2023
Python project to generate Kerala's distrcit level panchayath map.

Kerala-Panchayath-Maps Python project to generate Kerala's distrcit level panchayath map. As of now, geojson files of Kollam and Kozhikode are added t

Athul R T 2 Jan 10, 2022