An official implementation of the Anchor DETR.

Overview

Anchor DETR: Query Design for Transformer-Based Detector

Introduction

This repository is an official implementation of the Anchor DETR. We encode the anchor points as the object queries in DETR. Multiple patterns are attached to each anchor point to solve the difficulty: "one region, multiple objects". We also propose an attention variant RCDA to reduce the memory cost for high-resolution features.

DETR

Main Results

feature epochs AP GFLOPs Infer Speed (FPS)
DETR DC5 500 43.3 187 10 (12)
SMCA multi-level 50 43.7 152 10
Deformable DETR multi-level 50 43.8 173 15
Conditional DETR DC5 50 43.8 195 10
Anchor DETR DC5 50 44.3 151 16 (19)

Note:

  1. The results are based on ResNet-50 backbone.
  2. Inference speeds are measured on NVIDIA Tesla V100 GPU.
  3. The values in parentheses of the Infer Speed indicate the speed with torchscript optimization.

Model

name backbone AP URL
AnchorDETR-C5 R50 42.1 model / log
AnchorDETR-DC5 R50 44.3 model / log
AnchorDETR-C5 R101 43.5 model / log
AnchorDETR-DC5 R101 45.1 model / log

Note: the models and logs are also available at Baidu Netdisk with code hh13.

Usage

Installation

First, clone the repository locally:

git clone https://github.com/megvii-research/AnchorDETR.git

Then, install dependencies:

pip install -r requirements.txt

Training

To train AnchorDETR on a single node with 8 GPUs:

python -m torch.distributed.launch --nproc_per_node=8 --use_env main.py  --coco_path /path/to/coco 

Evaluation

To evaluate AnchorDETR on a single node with 8 GPUs:

python -m torch.distributed.launch --nproc_per_node=8 --use_env main.py --eval --coco_path /path/to/coco --resume /path/to/checkpoint.pth 

To evaluate AnchorDETR with a single GPU:

python main.py --eval --coco_path /path/to/coco --resume /path/to/checkpoint.pth

Citation

If you find this project useful for your research, please consider citing the paper.

@misc{wang2021anchor,
      title={Anchor DETR: Query Design for Transformer-Based Detector},
      author={Yingming Wang and Xiangyu Zhang and Tong Yang and Jian Sun},
      year={2021},
      eprint={2109.07107},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Contact

If you have any questions, feel free to open an issue or contact us at [email protected].

Owner
MEGVII Research
Power Human with AI. 持续创新拓展认知边界 非凡科技成就产品价值
MEGVII Research
Code for "Learning From Multiple Experts: Self-paced Knowledge Distillation for Long-tailed Classification", ECCV 2020 Spotlight

Learning From Multiple Experts: Self-paced Knowledge Distillation for Long-tailed Classification Implementation of "Learning From Multiple Experts: Se

27 Nov 05, 2022
AQP is a modular pipeline built to enable the comparison and testing of different quality metric configurations.

Audio Quality Platform - AQP An Open Modular Python Platform for Objective Speech and Audio Quality Metrics AQP is a highly modular pipeline designed

Jack Geraghty 24 Oct 01, 2022
Official PyTorch Implementation of Convolutional Hough Matching Networks, CVPR 2021 (oral)

Convolutional Hough Matching Networks This is the implementation of the paper "Convolutional Hough Matching Network" by J. Min and M. Cho. Implemented

Juhong Min 70 Nov 22, 2022
The-Secret-Sharing-Schemes - This interactive script demonstrates the Secret Sharing Schemes algorithm

The-Secret-Sharing-Schemes This interactive script demonstrates the Secret Shari

Nishaant Goswamy 1 Jan 02, 2022
FcaNet: Frequency Channel Attention Networks

FcaNet: Frequency Channel Attention Networks PyTorch implementation of the paper "FcaNet: Frequency Channel Attention Networks". Simplest usage Models

327 Dec 27, 2022
Enabling dynamic analysis of Legacy Embedded Systems in full emulated environment

PENecro This project is based on "Enabling dynamic analysis of Legacy Embedded Systems in full emulated environment", published on hardwear.io USA 202

Ta-Lun Yen 10 May 17, 2022
NLP made easy

GluonNLP: Your Choice of Deep Learning for NLP GluonNLP is a toolkit that helps you solve NLP problems. It provides easy-to-use tools that helps you l

Distributed (Deep) Machine Learning Community 2.5k Jan 04, 2023
Cognition-aware Cognate Detection

Cognition-aware Cognate Detection The repository which contains our code for our EACL 2021 paper titled, "Cognition-aware Cognate Detection". This wor

Prashant K. Sharma 1 Feb 01, 2022
YOLOX-RMPOLY

本算法为适应robomaster比赛,而改动自矩形识别的yolox算法。 基于旷视科技YOLOX,实现对不规则四边形的目标检测 TODO 修改onnx推理模型 更改/添加标注: 1.yolox/models/yolox_polyhead.py: 1.1继承yolox/models/yolo_

3 Feb 25, 2022
Vehicle direction identification consists of three module detection , tracking and direction recognization.

Vehicle-direction-identification Vehicle direction identification consists of three module detection , tracking and direction recognization. Algorithm

5 Nov 15, 2022
Data from "HateCheck: Functional Tests for Hate Speech Detection Models" (Röttger et al., ACL 2021)

In this repo, you can find the data from our ACL 2021 paper "HateCheck: Functional Tests for Hate Speech Detection Models". "test_suite_cases.csv" con

Paul Röttger 43 Nov 11, 2022
Bi-level feature alignment for versatile image translation and manipulation (Under submission of TPAMI)

Bi-level feature alignment for versatile image translation and manipulation (Under submission of TPAMI) Preparation Clone the Synchronized-BatchNorm-P

Fangneng Zhan 12 Aug 10, 2022
Stroke-predictions-ml-model - Machine learning model to predict individuals chances of having a stroke

stroke-predictions-ml-model machine learning model to predict individuals chance

Alex Volchek 1 Jan 03, 2022
Simple STAC Catalogs discovery tool.

STAC Catalog Discovery Simple STAC discovery tool. Just paste the STAC Catalog link and press Enter. Details STAC Discovery tool enables discovering d

Mykola Kozyr 21 Oct 19, 2022
A PyTorch implementation of "Semi-Supervised Graph Classification: A Hierarchical Graph Perspective" (WWW 2019)

SEAL ⠀⠀⠀ A PyTorch implementation of Semi-Supervised Graph Classification: A Hierarchical Graph Perspective (WWW 2019) Abstract Node classification an

Benedek Rozemberczki 202 Dec 27, 2022
Cleaned test data list of DukeMTMC-reID, ICCV2021

Cleaned DukeMTMC-reID Cleaned data list of DukeMTMC-reID released with our paper accepted by ICCV 2021: Learning Instance-level Spatial-Temporal Patte

14 Feb 19, 2022
A small tool to joint picture including gif

README 做设计的时候遇到拼接长图的情况,但是发现没有什么好用的能拼接gif的工具。 于是自己写了个gif拼接小工具。 可以自动拼接gif、png和jpg等常见格式。 效果 从上至下 从下至上 从左至右 从右至左 使用 克隆仓库 git clone https://github.com/Dels

3 Dec 15, 2021
Simple is not Easy: A Simple Strong Baseline for TextVQA and TextCaps[AAAI2021]

Simple is not Easy: A Simple Strong Baseline for TextVQA and TextCaps Here is the code for ssbassline model. We also provide OCR results/features/mode

ZephyrZhuQi 51 Nov 18, 2022
Hierarchical Few-Shot Generative Models

Hierarchical Few-Shot Generative Models Giorgio Giannone, Ole Winther This repo contains code and experiments for the paper Hierarchical Few-Shot Gene

Giorgio Giannone 6 Dec 12, 2022
Global Rhythm Style Transfer Without Text Transcriptions

Global Prosody Style Transfer Without Text Transcriptions This repository provides a PyTorch implementation of AutoPST, which enables unsupervised glo

Kaizhi Qian 193 Dec 30, 2022