Code for "Unsupervised Source Separation via Bayesian inference in the latent domain"

Overview

LQVAE-separation

Code for "Unsupervised Source Separation via Bayesian inference in the latent domain"

Paper

Samples

GT Compressed Separated
Drums GT Compressed Drums Separated Drums
Bass GT Compressed Bass Separated Bass
Mix GT Compressed Mix Separated Mix

The separation is performed on a x64 compressed latent domain. The results can be upsampled via Jukebox upsamplers in order to increment perceptive quality (WIP).

Install

Install the conda package manager from https://docs.conda.io/en/latest/miniconda.html

conda create --name lqvae-separation python=3.7.5
conda activate lqvae-separation
pip install mpi4py==3.0.3
pip install ffmpeg-python==0.2.0
pip install torch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2
pip install -r requirements.txt
pip install -e .

Checkpoints

  • Enter inside script/ folder and create the folder checkpoints/ and the folder results/.
  • Download the checkpoints contained in this Google Drive folder and put them inside checkpoints/

Separation with checkpoints

  • Call the following in order to perform bs separations of 3 seconds starting from second shift of the mixture created with the sources in path_1 and path_2. The sources must be WAV files sampled at 22kHz.
    PYTHONPATH=.. python bayesian_inference.py --shift=shift --path_1=path_1 --path_2=path_2 --bs=bs
    
  • The default value for bs is 64, and can be handled by an RTX3080 with 16 GB of VRAM. Lower the value if you get CUDA: out of memory.

Training

LQ-VAE

  • The vqvae/vqvae.pyfile of Jukebox has been modified in order to include the linearization loss of the LQ-VAE (it is computed at all levels of the hierarchical VQ-VAE but we only care of the topmost level given that we perform separation there). One can train a new LQ-VAE on custom data (here data/train for train and data/test for test) by running the following from the root of the project
PYTHONPATH=. mpiexec -n 1 python jukebox/train.py --hps=vqvae --sample_length=131072 --bs=8 
--audio_files_dir=data/train/ --labels=False --train --test --aug_shift --aug_blend --name=lq_vae --test_audio_files_dir=data/test
  • The trained model uses the vqvae hyperparameters in hparams.py so if you want to change the levels / downsampling factors you have to modify them there.
  • The only constraint for training the LQ-VAE is to use an even number for the batch size, given its use of pairs in the loss.
  • Given that L_lin enforces the sum operation on the latent domain, you can use the data of both sources together (or any other audio data).
  • Checkpoints are save in logs/lq_vae (lq_vae is the name parameter).

Priors

  • After training the LQ-VAE, train two priors on two different classes by calling
PYTHONPATH=. mpiexec -n 1 python jukebox/train.py --hps=vqvae,small_prior,all_fp16,cpu_ema --name=pior_source
 --audio_files_dir=data/source/train --test_audio_files_dir=data/source/test --labels=False --train --test --aug_shift
  --aug_blend --prior --levels=3 --level=2 --weight_decay=0.01 --save_iters=1000 --min_duration=24 --sample_length=1048576 
  --bs=16 --n_ctx=8192 --sample=True --sample_iters=1000 --restore_vqvae=logs/lq_vae/checkpoint_lq_vae.pth.tar
  • Here the data of the source is located in data/source/train and data/source/test and we assume the LQ-VAE has 3 levels (topmost level = 2).
  • The Transformer model is defined by the parameters of small_prior in hparams.py and uses a context of n_ctx=8192 codes.
  • The checkpoint path of the LQ-VAE trained in the previous step must be passed to --restore_vqvae
  • Checkpoints are save in logs/pior_source (pior_source is the name parameter).

Codebook sums

  • Before separation, the sums between all codes must be computed using the LQ-VAE. This can be done using the codebook_precalc.py in the script folder:
PYTHONPATH=.. python codebook_precalc.py --save_path=checkpoints/codebook_sum_precalc.pt 
--restore_vqvae=../logs/lq_vae/checkpoint_lq_vae.pth.tar` --raw_to_tokens=64 --l_bins=2048
--sample_rate=22050 --alpha=[0.5, 0.5] --downs_t=(2, 2, 2) --commit=1.0 --emb_width=64

Separation with trained checkpoints

  • Trained checkpoints can be given to bayesian_inference.py as following:
    PYTHONPATH=.. python bayesian_inference.py --shift=shift --path_1=path_1 --path_2=path_2 --bs=bs --restore_vqvae=checkpoints/checkpoint_step_60001_latent.pth.tar
    --restore_priors 'checkpoints/checkpoint_drums_22050_latent_78_19k.pth.tar' checkpoints/checkpoint_latest.pth.tar' --sum_codebook=checkpoints/codebook_precalc_22050_latent.pt
    
  • restore_priors accepts two paths to the first and second prior checkpoints.

Evaluation

  • In order to evaluate the pre-trained checkpoints, run bayesian_test.py after you have put the full Slakh drums and bass validation split inside data/bass/validation and data/drums/validation.

Future work

  • training of upsamplers for increasing the quality of the separations
  • better rejection sampling method (maybe use verifiers as in https://arxiv.org/abs/2110.14168)

Citations

If you find the code useful for your research, please consider citing

@article{mancusi2021unsupervised,
  title={Unsupervised Source Separation via Bayesian Inference in the Latent Domain},
  author={Mancusi, Michele and Postolache, Emilian and Fumero, Marco and Santilli, Andrea and Cosmo, Luca and Rodol{\`a}, Emanuele},
  journal={arXiv preprint arXiv:2110.05313},
  year={2021}
}

as well as the Jukebox baseline:

  • Dhariwal, P., Jun, H., Payne, C., Kim, J. W., Radford, A., & Sutskever, I. (2020). Jukebox: A generative model for music. arXiv preprint arXiv:2005.00341.
Owner
Michele Mancusi
PhD student in Computer Science @ La Sapienza University of Rome, MSc in Quantum Information @ La Sapienza University of Rome
Michele Mancusi
Effect of Different Encodings and Distance Functions on Quantum Instance-based Classifiers

Effect of Different Encodings and Distance Functions on Quantum Instance-based Classifiers The repository contains the code to reproduce the experimen

Alessandro Berti 4 Aug 24, 2022
Algorithmic Trading using RNN

Deep-Trading This an implementation adapted from Rachnog Neural networks for algorithmic trading. Part One — Simple time series forecasting and this c

Hazem Nomer 29 Sep 04, 2022
Package for working with hypernetworks in PyTorch.

Package for working with hypernetworks in PyTorch.

Christian Henning 71 Jan 05, 2023
This is a collection of all challenges in HKCERT CTF 2021

香港網絡保安新生代奪旗挑戰賽 2021 (HKCERT CTF 2021) This is a collection of all challenges (and writeups) in HKCERT CTF 2021 Challenges ID Chinese name Name Score S

10 Jan 27, 2022
Reviving Iterative Training with Mask Guidance for Interactive Segmentation

This repository provides the source code for training and testing state-of-the-art click-based interactive segmentation models with the official PyTorch implementation

Visual Understanding Lab @ Samsung AI Center Moscow 406 Jan 01, 2023
A PyTorch implementation of the Relational Graph Convolutional Network (RGCN).

Torch-RGCN Torch-RGCN is a PyTorch implementation of the RGCN, originally proposed by Schlichtkrull et al. in Modeling Relational Data with Graph Conv

Thiviyan Singam 66 Nov 30, 2022
SSD: Single Shot MultiBox Detector pytorch implementation focusing on simplicity

SSD: Single Shot MultiBox Detector Introduction Here is my pytorch implementation of 2 models: SSD-Resnet50 and SSDLite-MobilenetV2.

Viet Nguyen 149 Jan 07, 2023
Random Erasing Data Augmentation. Experiments on CIFAR10, CIFAR100 and Fashion-MNIST

Random Erasing Data Augmentation =============================================================== black white random This code has the source code for

Zhun Zhong 654 Dec 26, 2022
Official implementation of "CrossPoint: Self-Supervised Cross-Modal Contrastive Learning for 3D Point Cloud Understanding" (CVPR, 2022)

CrossPoint: Self-Supervised Cross-Modal Contrastive Learning for 3D Point Cloud Understanding (CVPR'22) Paper Link | Project Page Abstract : Manual an

Mohamed Afham 152 Dec 23, 2022
Code and datasets for TPAMI 2021

SkeletonNet This repository constains the codes and ShapeNetV1-Surface-Skeleton,ShapNetV1-SkeletalVolume and 2d image datasets ShapeNetRendering. Plea

34 Aug 15, 2022
Extracting and filtering paraphrases by bridging natural language inference and paraphrasing

nli2paraphrases Source code repository accompanying the preprint Extracting and filtering paraphrases by bridging natural language inference and parap

Matej Klemen 1 Mar 09, 2022
PyTorch implementation of paper A Fast Knowledge Distillation Framework for Visual Recognition.

FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f

Zhiqiang Shen 129 Dec 24, 2022
A big endian Gentoo port developed on a Pine64.org RockPro64

Gentoo-aarch64_be A big endian Gentoo port developed on a Pine64.org RockPro64 The endian wars are over... little endian won. As a result, it is incre

Rory Bolt 6 Dec 07, 2022
[ICLR 2021] "CPT: Efficient Deep Neural Network Training via Cyclic Precision" by Yonggan Fu, Han Guo, Meng Li, Xin Yang, Yining Ding, Vikas Chandra, Yingyan Lin

CPT: Efficient Deep Neural Network Training via Cyclic Precision Yonggan Fu, Han Guo, Meng Li, Xin Yang, Yining Ding, Vikas Chandra, Yingyan Lin Accep

26 Oct 25, 2022
KaziText is a tool for modelling common human errors.

KaziText KaziText is a tool for modelling common human errors. It estimates probabilities of individual error types (so called aspects) from grammatic

ÚFAL 3 Nov 24, 2022
BasicRL: easy and fundamental codes for deep reinforcement learning。It is an improvement on rainbow-is-all-you-need and OpenAI Spinning Up.

BasicRL: easy and fundamental codes for deep reinforcement learning BasicRL is an improvement on rainbow-is-all-you-need and OpenAI Spinning Up. It is

RayYoh 12 Apr 28, 2022
PSML: A Multi-scale Time-series Dataset for Machine Learning in Decarbonized Energy Grids

PSML: A Multi-scale Time-series Dataset for Machine Learning in Decarbonized Energy Grids The electric grid is a key enabling infrastructure for the a

Texas A&M Engineering Research 19 Jan 07, 2023
A Pytorch Implementation of a continuously rate adjustable learned image compression framework.

GainedVAE A Pytorch Implementation of a continuously rate adjustable learned image compression framework, Gained Variational Autoencoder(GainedVAE). N

39 Dec 24, 2022
Code for CMaskTrack R-CNN (proposed in Occluded Video Instance Segmentation)

CMaskTrack R-CNN for OVIS This repo serves as the official code release of the CMaskTrack R-CNN model on the Occluded Video Instance Segmentation data

Q . J . Y 61 Nov 25, 2022
这是一个yolox-pytorch的源码,可以用于训练自己的模型。

YOLOX:You Only Look Once目标检测模型在Pytorch当中的实现 目录 性能情况 Performance 实现的内容 Achievement 所需环境 Environment 小技巧的设置 TricksSet 文件下载 Download 训练步骤 How2train 预测步骤

Bubbliiiing 613 Jan 05, 2023