Style-based Point Generator with Adversarial Rendering for Point Cloud Completion (CVPR 2021)

Overview

Style-based Point Generator with Adversarial Rendering for Point Cloud Completion (CVPR 2021)

An efficient PyTorch library for Point Cloud Completion.

Project page | Paper | Video

Chulin Xie*, Chuxin Wang*, Bo Zhang, Hao Yang, Dong Chen, and Fang Wen. (*Equal contribution)

Abstract

We proposed a novel Style-based Point Generator with Adversarial Rendering (SpareNet) for point cloud completion. Firstly, we present the channel-attentive EdgeConv to fully exploit the local structures as well as the global shape in point features. Secondly, we observe that the concatenation manner used by vanilla foldings limits its potential of generating a complex and faithful shape. Enlightened by the success of StyleGAN, we regard the shape feature as style code that modulates the normalization layers during the folding, which considerably enhances its capability. Thirdly, we realize that existing point supervisions, e.g., Chamfer Distance or Earth Mover’s Distance, cannot faithfully reflect the perceptual quality of the reconstructed points. To address this, we propose to project the completed points to depth maps with a differentiable renderer and apply adversarial training to advocate the perceptual realism under different viewpoints. Comprehensive experiments on ShapeNet and KITTI prove the effectiveness of our method, which achieves state-of-the-art quantitative performance while offering superior visual quality.

Installation

  1. Create a virtual environment via conda.

    conda create -n sparenet python=3.7
    conda activate sparenet
  2. Install torch and torchvision.

    conda install pytorch cudatoolkit=10.1 torchvision -c pytorch
  3. Install requirements.

    pip install -r requirements.txt
  4. Install cuda

    sh setup_env.sh

Dataset

  • Download the processed ShapeNet dataset generated by GRNet, and the KITTI dataset.

  • Update the file path of the datasets in configs/base_config.py:

    __C.DATASETS.shapenet.partial_points_path = "/path/to/datasets/ShapeNetCompletion/%s/partial/%s/%s/%02d.pcd"
    __C.DATASETS.shapenet.complete_points_path = "/path/to/datasets/ShapeNetCompletion/%s/complete/%s/%s.pcd"
    __C.DATASETS.kitti.partial_points_path = "/path/to/datasets/KITTI/cars/%s.pcd"
    __C.DATASETS.kitti.bounding_box_file_path = "/path/to/datasets/KITTI/bboxes/%s.txt"
    
    # Dataset Options: ShapeNet, ShapeNetCars, KITTI
    __C.DATASET.train_dataset = "ShapeNet"
    __C.DATASET.test_dataset = "ShapeNet"
    

Get Started

Inference Using Pretrained Model

The pretrained models:

Train

All log files in the training process, such as log message, checkpoints, etc, will be saved to the work directory.

  • run

    python   --gpu ${GPUS}\
             --work_dir ${WORK_DIR} \
             --model ${network} \
             --weights ${path to checkpoint}
  • example

    python  train.py --gpu 0,1,2,3 --work_dir /path/to/logfiles --model sparenet --weights /path/to/cheakpoint

Differentiable Renderer

A fully differentiable point renderer that enables end-to-end rendering from 3D point cloud to 2D depth maps. See the paper for details.

Usage of Renderer

The inputs of renderer are pcd, views and radius, and the outputs of renderer are depth_maps.

  • example
    # `projection_mode`: a str with value "perspective" or "orthorgonal"
    # `eyepos_scale`: a float that defines the distance of eyes to (0, 0, 0)
    # `image_size`: an int defining the output image size
    renderer = ComputeDepthMaps(projection_mode, eyepos_scale, image_size)
    
    # `data`: a tensor with shape [batch_size, num_points, 3]
    # `view_id`: the index of selected view satisfying 0 <= view_id < 8
    # `radius_list`: a list of floats, defining the kernel radius to render each point
    depthmaps = renderer(data, view_id, radius_list)

License

The codes and the pretrained model in this repository are under the MIT license as specified by the LICENSE file.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

BibTex

If you like our work and use the codebase or models for your research, please cite our work as follows.

@inproceedings{xie2021stylebased,
      title={Style-based Point Generator with Adversarial Rendering for Point Cloud Completion}, 
      author={Chulin Xie and Chuxin Wang and Bo Zhang and Hao Yang and Dong Chen and Fang Wen},
      booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
      year={2021},
}
Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
A CROSS-MODAL FUSION NETWORK BASED ON SELF-ATTENTION AND RESIDUAL STRUCTURE FOR MULTIMODAL EMOTION RECOGNITION

CFN-SR A CROSS-MODAL FUSION NETWORK BASED ON SELF-ATTENTION AND RESIDUAL STRUCTURE FOR MULTIMODAL EMOTION RECOGNITION The audio-video based multimodal

skeleton 15 Sep 26, 2022
Multiview Dataset Toolkit

Multiview Dataset Toolkit Using multi-view cameras is a natural way to obtain a complete point cloud. However, there is to date only one multi-view 3D

11 Dec 22, 2022
MLP-Numpy - A simple modular implementation of Multi Layer Perceptron in pure Numpy.

MLP-Numpy A simple modular implementation of Multi Layer Perceptron in pure Numpy. I used the Iris dataset from scikit-learn library for the experimen

Soroush Omranpour 1 Jan 01, 2022
HugsVision is a easy to use huggingface wrapper for state-of-the-art computer vision

HugsVision is an open-source and easy to use all-in-one huggingface wrapper for computer vision. The goal is to create a fast, flexible and user-frien

Labrak Yanis 166 Nov 27, 2022
Unet network with mean teacher for altrasound image segmentation

Unet network with mean teacher for altrasound image segmentation

5 Nov 21, 2022
PyTorch code for Composing Partial Differential Equations with Physics-Aware Neural Networks

FInite volume Neural Network (FINN) This repository contains the PyTorch code for models, training, and testing, and Python code for data generation t

Cognitive Modeling 20 Dec 18, 2022
Repository for the Bias Benchmark for QA dataset.

BBQ Repository for the Bias Benchmark for QA dataset. Authors: Alicia Parrish, Angelica Chen, Nikita Nangia, Vishakh Padmakumar, Jason Phang, Jana Tho

ML² AT CILVR 18 Nov 18, 2022
Utilities and information for the signals.numer.ai tournament

dsignals Utilities and information for the signals.numer.ai tournament using eodhistoricaldata.com eodhistoricaldata.com provides excellent historical

Degerhan Usluel 23 Dec 18, 2022
Loopy belief propagation for factor graphs on discrete variables, in JAX!

PGMax implements general factor graphs for discrete probabilistic graphical models (PGMs), and hardware-accelerated differentiable loopy belief propagation (LBP) in JAX.

Vicarious 62 Dec 23, 2022
OpenIPDM is a MATLAB open-source platform that stands for infrastructures probabilistic deterioration model

Open-Source Toolbox for Infrastructures Probabilistic Deterioration Modelling OpenIPDM is a MATLAB open-source platform that stands for infrastructure

CIVML 0 Jan 20, 2022
2D Time independent Schrodinger equation solver for arbitrary shape of well

Schrodinger Well Python Python solver for timeless Schrodinger equation for well with arbitrary shape https://imgur.com/a/jlhK7OZ Pictures of circular

WeightAn 24 Nov 18, 2022
LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models

LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models. Developers can reproduce these SOTA methods and

TuZheng 405 Jan 04, 2023
Code and data for ACL2021 paper Cross-Lingual Abstractive Summarization with Limited Parallel Resources.

Multi-Task Framework for Cross-Lingual Abstractive Summarization (MCLAS) The code for ACL2021 paper Cross-Lingual Abstractive Summarization with Limit

Yu Bai 43 Nov 07, 2022
[ICML 2021] "Graph Contrastive Learning Automated" by Yuning You, Tianlong Chen, Yang Shen, Zhangyang Wang

Graph Contrastive Learning Automated PyTorch implementation for Graph Contrastive Learning Automated [talk] [poster] [appendix] Yuning You, Tianlong C

Shen Lab at Texas A&M University 80 Nov 23, 2022
Official PyTorch Implementation of Mask-aware IoU and maYOLACT Detector [BMVC2021]

The official implementation of Mask-aware IoU and maYOLACT detector. Our implementation is based on mmdetection. Mask-aware IoU for Anchor Assignment

Kemal Oksuz 46 Sep 29, 2022
PyTorch Implementation of ByteDance's Cross-speaker Emotion Transfer Based on Speaker Condition Layer Normalization and Semi-Supervised Training in Text-To-Speech

Cross-Speaker-Emotion-Transfer - PyTorch Implementation PyTorch Implementation of ByteDance's Cross-speaker Emotion Transfer Based on Speaker Conditio

Keon Lee 114 Jan 08, 2023
Not Suitable for Work (NSFW) classification using deep neural network Caffe models.

Open nsfw model This repo contains code for running Not Suitable for Work (NSFW) classification deep neural network Caffe models. Please refer our blo

Yahoo 5.6k Jan 05, 2023
SHRIMP: Sparser Random Feature Models via Iterative Magnitude Pruning

SHRIMP: Sparser Random Feature Models via Iterative Magnitude Pruning This repository is the official implementation of "SHRIMP: Sparser Random Featur

Bobby Shi 0 Dec 16, 2021
Code for A Volumetric Transformer for Accurate 3D Tumor Segmentation

VT-UNet This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmentaion results of VT-UNet. Environmen

Himashi Amanda Peiris 114 Dec 20, 2022
Federated Deep Reinforcement Learning for the Distributed Control of NextG Wireless Networks.

FDRL-PC-Dyspan Federated Deep Reinforcement Learning for the Distributed Control of NextG Wireless Networks. This repository contains the entire code

Peyman Tehrani 17 Nov 18, 2022