code for the ICLR'22 paper: On Robust Prefix-Tuning for Text Classification

Overview

On Robust Prefix-Tuning for Text Classification

Prefix-tuning has drawed much attention as it is a parameter-efficient and modular alternative to adapting pretrained language models to downstream tasks. However, we find that prefix-tuning suffers from adversarial attacks. While, unfortunately, current robust NLP methods are unsuitable for prefix-tuning as they will inevitably hamper the modularity of prefix-tuning. In our ICLR'22 paper, we propose robust prefix-tuning for text classification. Our method leverages the idea of test-time tuning, which preserves the strengths of prefix-tuning and improves its robustness at the same time. This repository contains the code for the proposed robust prefix-tuning method.

Prerequisite

PyTorch>=1.2.0, pytorch-transformers==1.2.0, OpenAttack==2.0.1, and GPUtil==1.4.0.

Train the original prefix P_θ

For the training phase of standard prefix-tuning, the command is:

  source train.sh --preseqlen [A] --learning_rate [B] --tasks [C] --n_train_epochs [D] --device [E]

where

  • [A]: The length of the prefix P_θ.
  • [B]: The (initial) learning rate.
  • [C]: The benchmark. Default: sst.
  • [D]: The total epochs during training.
  • [E]: The id of the GPU to be used.

We can also use adversarial training to improve the robustness of the prefix. For the training phase of adversarial prefix-tuning, the command is:

  source train_adv.sh --preseqlen [A] --learning_rate [B] --tasks [C] --n_train_epochs [D] --device [E] --pgd_ball [F]

where

  • [A]~[E] have the same meanings with above.
  • [F]: where norm ball is word-wise or sentence-wise.

Note that the DATA_DIR and MODEL_DIR in train_adv.sh are different from those in train.sh. When experimenting with the adversarially trained prefix P_θ's in the following steps, remember to switch the DATA_DIR and MODEL_DIR in the corresponding scripts as well.

Generate Adversarial Examples

We use the OpenAttack package to generate in-sentence adversaries. The command is:

  source generate_adv_insent.sh --preseqlen [A] --learning_rate [B] --tasks [C] --device [E] --test_ep [G] --attack [H]

where

  • [A],[B],[C],[E] have the same meanings with above.
  • [G]: Load the prefix P_θ parameters trained for [G] epochs for testing. We set G=D.
  • [H]: Generate adversarial examples based on clean test set with the in-sentence attack [H].

We also implement the Universal Adversarial Trigger attack. The command is:

  source generate_adv_uat.sh --preseqlen [A] --learning_rate [B] --tasks [C] --device [E] --test_ep [G] --attack clean-[H2] --uat_len [I] --uat_epoch [J]

where

  • [A],[B],[C],[E],[G] have the same meanings with above.
  • [H2]: We should search for UATs for each class in the benchmark, and H2 indicates the class id. H2=0/1 for SST, 0/1/2/3 for AG News, and 0/1/2 for SNLI.
  • [I]: The length of the UAT.
  • [J]: The epochs for exploiting UAT.

Test the performance of P_θ

The command for performance testing of P_θ under clean data and in-sentence attacks is:

  source test_prefix_theta_insent.sh --preseqlen [A] --learning_rate [B] --tasks [C] --device [E] --test_ep [G] --attack [H] --test_batch_size [K]

Under UAT attack, the test command is:

  source test_prefix_theta_uat.sh --preseqlen [A] --learning_rate [B] --tasks [C] --device [E] --test_ep [G] --attack clean --uat_len [I] --test_batch_size [K]

where

  • [A]~[I] have the same meanings with above.
  • [K]: The test batch size. when K=0, the batch size is adaptive (determined by GPU memory); when K>0, the batch size is fixed.

Robust Prefix P'_ψ: Constructing the canonical manifolds

By constructing the canonical manifolds with PCA, we get the projection matrices. The command is:

  source get_proj.sh --preseqlen [A] --learning_rate [B] --tasks [C] --device [E] --test_ep [G]

where [A]~[G] have the same meanings with above.

Robust Prefix P'_ψ: Test its performance

Under clean data and in-sentence attacks, the command is:

  source test_robust_prefix_psi_insent.sh --preseqlen [A] --learning_rate [B] --tasks [C] --device [E] --test_ep [G] --attack [H] --test_batch_size [K] --PMP_lr [L] --PMP_iter [M]

Under UAT attack, the test command is:

  source test_robust_prefix_psi_uat.sh --preseqlen [A] --learning_rate [B] --tasks [C] --device [E] --test_ep [G] --attack clean --uat_len [I] --test_batch_size [K] --PMP_lr [L] --PMP_iter [M]

where

  • [A]~[K] have the same meanings with above.
  • [L]: The learning rate for test-time P'_ψ tuning.
  • [M]: The iterations for test-time P'_ψ tuning.

Running Example

# Train the original prefix P_θ
source train.sh --tasks sst --n_train_epochs 100 --device 0
source train_adv.sh --tasks sst --n_train_epochs 100 --device 1 --pgd_ball word

# Generate Adversarial Examples
source generate_adv_insent.sh --tasks sst --device 0 --test_ep 100 --attack bug
source generate_adv_uat.sh --tasks sst --device 0 --test_ep 100 --attack clean-0 --uat_len 3 --uat_epoch 10
source generate_adv_uat.sh --tasks sst --device 0 --test_ep 100 --attack clean-1 --uat_len 3 --uat_epoch 10

# Test the performance of P_θ
source test_prefix_theta_insent.sh --tasks sst --device 0 --test_ep 100 --attack bug --test_batch_size 0
source test_prefix_theta_uat.sh --tasks sst --device 0 --test_ep 100 --attack clean --uat_len 3 --test_batch_size 0

# Robust Prefix P'_ψ: Constructing the canonical manifolds
source get_proj.sh --tasks sst --device 0 --test_ep 100

# Robust Prefix P'_ψ: Test its performance
source test_robust_prefix_psi_insent.sh --tasks sst --device 0 --test_ep 100 --attack bug --test_batch_size 0 --PMP_lr 0.15 --PMP_iter 10
source test_robust_prefix_psi_uat.sh --tasks sst --device 0 --test_ep 100 --attack clean --uat_len 3 --test_batch_size 0 --PMP_lr 0.05 --PMP_iter 10

Released Data & Models

The training the original prefix P_θ and the process of generating adversarial examples can be time-consuming. As shown in our paper, the adversarial prefix-tuning is particularly slow. Efforts need to be paid on generating adversaries as well, since different attacks are to be performed on the test set based on each trained prefix. We also found that OpenAttack is now upgraded to v2.1.1, which causes compatibility issues in our codes (test_prefix_theta_insent.py).

In order to facilitate research on the robustness of prefix-tuning, we release the prefix checkpoints P_θ (with both std. and adv. training), the processed test sets that are perturbed by in-sentence attacks (including PWWS and TextBugger), as well as the generated projection matrices of the canonical manifolds in our runs for reproducibility and further enhancement. We have also hard-coded the exploited UAT tokens in test_prefix_theta_uat.py and test_robust_prefix_psi_uat.py. All the materials can be found here.

Acknowledgements:

The implementation of robust prefix tuning is based on the LAMOL repo, which is the code of LAMOL: LAnguage MOdeling for Lifelong Language Learning that studies NLP lifelong learning with GPT-style pretrained language models.

Bibtex

If you find this repository useful for your research, please consider citing our work:

@inproceedings{
  yang2022on,
  title={On Robust Prefix-Tuning for Text Classification},
  author={Zonghan Yang and Yang Liu},
  booktitle={International Conference on Learning Representations},
  year={2022},
  url={https://openreview.net/forum?id=eBCmOocUejf}
}
Owner
Zonghan Yang
Graduate student in Tsinghua University. Two drifters, off to see the world - there's such a lot of world to see...
Zonghan Yang
PyTorch Implementation of AnimeGANv2

PyTorch implementation of AnimeGANv2

4k Jan 07, 2023
Implementation of CaiT models in TensorFlow and ImageNet-1k checkpoints. Includes code for inference and fine-tuning.

CaiT-TF (Going deeper with Image Transformers) This repository provides TensorFlow / Keras implementations of different CaiT [1] variants from Touvron

Sayak Paul 9 Jun 26, 2022
Deep Multimodal Neural Architecture Search

MMNas: Deep Multimodal Neural Architecture Search This repository corresponds to the PyTorch implementation of the MMnas for visual question answering

Vision and Language Group@ MIL 23 Dec 21, 2022
Learning to See by Looking at Noise

Learning to See by Looking at Noise This is the official implementation of Learning to See by Looking at Noise. In this work, we investigate a suite o

Manel Baradad Jurjo 82 Dec 24, 2022
Official implementation of the paper "Topographic VAEs learn Equivariant Capsules"

Topographic Variational Autoencoder Paper: https://arxiv.org/abs/2109.01394 Getting Started Install requirements with Anaconda: conda env create -f en

T. Andy Keller 69 Dec 12, 2022
Parameter Efficient Deep Probabilistic Forecasting

PEDPF Parameter Efficient Deep Probabilistic Forecasting (PEDPF) is a repository containing code to run experiments for several deep learning based pr

Olivier Sprangers 10 Jun 13, 2022
SASM - simple crossplatform IDE for NASM, MASM, GAS and FASM assembly languages

SASM (SimpleASM) - простая кроссплатформенная среда разработки для языков ассемблера NASM, MASM, GAS, FASM с подсветкой синтаксиса и отладчиком. В SA

Dmitriy Manushin 5.6k Jan 06, 2023
Jittor 64*64 implementation of StyleGAN

StyleGanJittor (Tsinghua university computer graphics course) Overview Jittor 64

Song Shengyu 3 Jan 20, 2022
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

538 Jan 09, 2023
TorchGRL is the source code for our paper Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Mixed Traffic Environments for IV 2022.

TorchGRL TorchGRL is the source code for our paper Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Mixed Traffi

XXQQ 42 Dec 09, 2022
Automatically erase objects in the video, such as logo, text, etc.

Video-Auto-Wipe Read English Introduction:Here   本人不定期的基于生成技术制作一些好玩有趣的算法模型,这次带来的作品是“视频擦除”方向的应用模型,它实现的功能是自动感知到视频中我们不想看见的部分(譬如广告、水印、字幕、图标等等)然后进行擦除。由于图标擦

seeprettyface.com 141 Dec 26, 2022
Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Nikolas Petrou 1 Jan 13, 2022
MAME is a multi-purpose emulation framework.

MAME's purpose is to preserve decades of software history. As electronic technology continues to rush forward, MAME prevents this important "vintage" software from being lost and forgotten.

Michael Murray 6 Oct 25, 2020
OpenL3: Open-source deep audio and image embeddings

OpenL3 OpenL3 is an open-source Python library for computing deep audio and image embeddings. Please refer to the documentation for detailed instructi

Music and Audio Research Laboratory - NYU 326 Jan 02, 2023
Personal thermal comfort models using digital twins: Preference prediction with BIM-extracted spatial-temporal proximity data from Build2Vec

Personal thermal comfort models using digital twins: Preference prediction with BIM-extracted spatial-temporal proximity data from Build2Vec This repo

Building and Urban Data Science (BUDS) Group 5 Dec 02, 2022
Language Used: Python . Made in Jupyter(Anaconda) notebook.

FACE-DETECTION-ATTENDENCE-SYSTEM Made in Jupyter(Anaconda) notebook. Language Used: Python Steps to perform before running the program : Install Anaco

1 Jan 12, 2022
Source code for the paper "SEPP: Similarity Estimation of Predicted Probabilities for Defending and Detecting Adversarial Text" PACLIC 2021

Adversarial text generator Refer to "adversarial_text_generator"[https://github.com/quocnsh/SEPP_generator] project for generating adversarial texts A

0 Oct 05, 2021
A Python package to create, run, and post-process MODFLOW-based models.

Version 3.3.5 — release candidate Introduction FloPy includes support for MODFLOW 6, MODFLOW-2005, MODFLOW-NWT, MODFLOW-USG, and MODFLOW-2000. Other s

388 Nov 29, 2022
Hydra: an Extensible Fuzzing Framework for Finding Semantic Bugs in File Systems

Hydra: An Extensible Fuzzing Framework for Finding Semantic Bugs in File Systems Paper Finding Semantic Bugs in File Systems with an Extensible Fuzzin

gts3.org (<a href=[email protected])"> 129 Dec 15, 2022
PyTorch implementation for the paper Pseudo Numerical Methods for Diffusion Models on Manifolds

Pseudo Numerical Methods for Diffusion Models on Manifolds (PNDM) This repo is the official PyTorch implementation for the paper Pseudo Numerical Meth

Luping Liu (刘路平) 196 Jan 05, 2023