State-to-Distribution (STD) Model

Related tags

Deep LearningSTD
Overview

State-to-Distribution (STD) Model

In this repository we provide exemplary code on how to construct and evaluate a state-to-distribution (STD) model for a reactive atom-diatom collision system.

Requirements

  • python 3.7
  • TensorFlow 2.4
  • SciKit-learn 0.20

Setting up the environment

We recommend to use Miniconda for the creation of a virtual environment.

Once in miniconda, you can create a virtual enviroment called StD from the .yml file with the following command

conda env create --file StD.yml

On the same file, there is a version of the required packages. Additionally, a .txt file is included, if this is used the necessary command for the creation of the environment is:

conda create --file StD.txt 

To activate the virtual environment use the command:

conda activate StD

You are ready to run the code.

Predict product state distributions

For specific initial conditions

To predict product state distributions for fixed nitial conditions from the test set (77 data sets). Go to the evaluation_InitialCondition folder.

Don't remove (external_plotting directory).

python3 evaluate.py 

The evaluate.py file predicts product state distributions for all initial conditions within the test set and compares them with reference data obtained from quasi-classical trajectory similations (QCT).

Edit the code evaluation.py in the folder evaluation_InitialCondition to specify whether accuracy measures should be calculated based on comparison of the NN predictions and QCT data solely at the grid points where the NN places its predictions (flag "NN") or at all points where QCT data is available (flag "QCT") based on linear interpolation. Then run the code to obtain a file containing the desired accuracy measures, as well as a PDF with the corresponding plots. The evaluations are compared with available QCT data located in QCT_Data/Initial_Condition_Data.

For thermal reactant state dsitributions

To predict product state distributions from thermal reactant state distributions go to the evaluation_Temperature folder.

Edit the code evaluation.py in the folder evaluation_Temperature, to specify which of the four studied cases

  • Ttrans=Trot=Tvib (indices_set1.txt)
  • Ttrans != Tvib =Trot (indices_set2.txt)
  • Ttrans=Tvib != Trot (indices_set3.txt)
  • Ttrans != Tvib != Trot (indices_set4.txt)

you want to analyse.

Then run the code with the following command to obtain a file containing the desired accuracy measures, as well as a PDF with the corresponding plots for three example temperatures.

Don't remove (external_plotting directory).

python3 evaluate.py

The evaluations are compared with the available QCT data in QCT_Data/Temp_Data.

The complete list of temperatures and can be read from the file tinput.dat in data_preprocessing/TEMP/tinput.dat .

Cite as:

Julian Arnold, Debasish Koner, Juan Carlos San Vicente, Narendra Singh, Raymond J. Bemish, and Markus Meuwly,

!*Complete name of paper or do you want to cite the repository? Also, add an email or responsable*
Owner
[email protected]
Repository for free and open-source code developed by people from Markus Meuwly's group at university of Basel, Switzerland
<a href=[email protected]">
Code for our paper "SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization", ACL 2021

SimCLS Code for our paper: "SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization", ACL 2021 1. How to Install Requirements

Yixin Liu 150 Dec 12, 2022
An algorithm study of the 6th iOS 10 set of Boost Camp Web Mobile

알고리즘 스터디 🔥 부스트캠프 웹모바일 6기 iOS 10조의 알고리즘 스터디 입니다. 개인적인 사정 등으로 S034, S055만 참가하였습니다. 스터디 목적 상진: 코테 합격 + 부캠끝나고 아침에 일어나기 위해 필요한 사이클 기완: 꾸준하게 자리에 앉아 공부하기 +

2 Jan 11, 2022
Pytorch Lightning Implementation of SC-Depth Methods.

SC_Depth_pl: This is a pytorch lightning implementation of SC-Depth (V1, V2) for self-supervised learning of monocular depth from video. In the V1 (IJ

JiaWang Bian 216 Dec 30, 2022
A PyTorch Lightning Callback for pushing models to the Hugging Face Hub 🤗⚡️

hf-hub-lightning A callback for pushing lightning models to the Hugging Face Hub. Note: I made this package for myself, mostly...if folks seem to be i

Nathan Raw 27 Dec 14, 2022
Python framework for Stochastic Differential Equations modeling

SDElearn: a Python package for SDE modeling This package implements functionalities for working with Stochastic Differential Equations models (SDEs fo

4 May 10, 2022
A lossless neural compression framework built on top of JAX.

Kompressor Branch CI Coverage main (active) main development A neural compression framework built on top of JAX. Install setup.py assumes a compatible

Rosalind Franklin Institute 2 Mar 14, 2022
A clean and robust Pytorch implementation of PPO on continuous action space.

PPO-Continuous-Pytorch I found the current implementation of PPO on continuous action space is whether somewhat complicated or not stable. And this is

XinJingHao 56 Dec 16, 2022
TorchIO is a Medical image preprocessing and augmentation toolkit for deep learning. Part of the PyTorch Ecosystem.

Medical image preprocessing and augmentation toolkit for deep learning. Part of the PyTorch Ecosystem.

Fernando Pérez-García 1.6k Jan 06, 2023
NeuTex: Neural Texture Mapping for Volumetric Neural Rendering

NeuTex: Neural Texture Mapping for Volumetric Neural Rendering Paper: https://arxiv.org/abs/2103.00762 Running Run on the provided DTU scene cd run ba

Fanbo Xiang 67 Dec 28, 2022
Kaggle Lyft Motion Prediction for Autonomous Vehicles 4th place solution

Lyft Motion Prediction for Autonomous Vehicles Code for the 4th place solution of Lyft Motion Prediction for Autonomous Vehicles on Kaggle. Discussion

44 Jun 27, 2022
Funnels: Exact maximum likelihood with dimensionality reduction.

Funnels This repository contains the code needed to reproduce the experiments from the paper: Funnels: Exact maximum likelihood with dimensionality re

2 Apr 21, 2022
Learning from Synthetic Shadows for Shadow Detection and Removal [Inoue+, IEEE TCSVT 2020].

Learning from Synthetic Shadows for Shadow Detection and Removal (IEEE TCSVT 2020) Overview This repo is for the paper "Learning from Synthetic Shadow

Naoto Inoue 67 Dec 28, 2022
Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training

Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training Code for our paper "Predicting lncRNA–protein interactio

zhanglabNKU 1 Nov 29, 2022
A web-based application for quick, scalable, and automated hyperparameter tuning and stacked ensembling in Python.

Xcessiv Xcessiv is a tool to help you create the biggest, craziest, and most excessive stacked ensembles you can think of. Stacked ensembles are simpl

Reiichiro Nakano 1.3k Nov 17, 2022
TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification

TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification [NeurIPS 2021] Abstract Multiple instance learn

132 Dec 30, 2022
BEAS: Blockchain Enabled Asynchronous & Secure Federated Machine Learning

BEAS Blockchain Enabled Asynchronous and Secure Federated Machine Learning Default Network Configuration: The default application uses the HyperLedger

Harpreet Virk 11 Nov 20, 2022
This is an example implementation of the paper "Cross Domain Robot Imitation with Invariant Representation".

IR-GAIL This is an example implementation of the paper "Cross Domain Robot Imitation with Invariant Representation". Dependency The experiments are de

Zhao-Heng Yin 1 Jul 14, 2022
PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech

PortaSpeech - PyTorch Implementation PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech. Model Size Module Nor

Keon Lee 279 Jan 04, 2023
Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis in JAX

SYMPAIS: Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis Overview | Installation | Documentation | Examples | Notebo

Yicheng Luo 4 Sep 13, 2022
Pytorch implementation of 'Fingerprint Presentation Attack Detector Using Global-Local Model'

RTK-PAD This is an official pytorch implementation of 'Fingerprint Presentation Attack Detector Using Global-Local Model', which is accepted by IEEE T

6 Aug 01, 2022