UMT is a unified and flexible framework which can handle different input modality combinations, and output video moment retrieval and/or highlight detection results.

Related tags

Deep LearningUMT
Overview

Unified Multi-modal Transformers

arXiv License

This repository maintains the official implementation of the paper UMT: Unified Multi-modal Transformers for Joint Video Moment Retrieval and Highlight Detection by Ye Liu, Siyuan Li, Yang Wu, Chang Wen Chen, Ying Shan, and Xiaohu Qie, which has been accepted by CVPR 2022.

Installation

Please refer to the following environmental settings that we use. You may install these packages by yourself if you meet any problem during automatic installation.

  • CUDA 11.5.0
  • CUDNN 8.3.2.44
  • Python 3.10.0
  • PyTorch 1.11.0
  • NNCore 0.3.6

Install from source

  1. Clone the repository from GitHub.
git clone https://github.com/TencentARC/UMT.git
cd UMT
  1. Install dependencies.
pip install -r requirements.txt

Getting Started

Download and prepare the datasets

  1. Download and extract the datasets.
  1. Prepare the files in the following structure.
UMT
├── configs
├── datasets
├── models
├── tools
├── data
│   ├── qvhighlights
│   │   ├── *features
│   │   ├── highlight_{train,val,test}_release.jsonl
│   │   └── subs_train.jsonl
│   ├── charades
│   │   ├── *features
│   │   └── charades_sta_{train,test}.txt
│   ├── youtube
│   │   ├── *features
│   │   └── youtube_anno.json
│   └── tvsum
│       ├── *features
│       └── tvsum_anno.json
├── README.md
├── setup.cfg
└── ···

Train a model

Run the following command to train a model using a specified config.

# Single GPU
python tools/launch.py ${path-to-config}

# Multiple GPUs
torchrun --nproc_per_node=${num-gpus} tools/launch.py ${path-to-config}

Test a model and evaluate results

Run the following command to test a model and evaluate results.

python tools/launch.py ${path-to-config} --checkpoint ${path-to-checkpoint} --eval

Pre-train with ASR captions on QVHighlights

Run the following command to pre-train a model using ASR captions on QVHighlights.

torchrun --nproc_per_node=4 tools/launch.py configs/qvhighlights/umt_base_pretrain_100e_asr.py

Model Zoo

We provide multiple pre-trained models and training logs here. All the models are trained with a single NVIDIA Tesla V100-FHHL-16GB GPU and are evaluated using the default metrics of the datasets.

Dataset Model Type MR mAP HD mAP Download
[email protected] [email protected] [email protected] [email protected]
QVHighlights UMT-B 38.59 39.85 model | metrics
UMT-B w/ PT 39.26 40.10 model | metrics
Charades-STA UMT-B V + A 48.31 29.25 88.79 56.08 model | metrics
UMT-B V + O 49.35 26.16 89.41 54.95 model | metrics
YouTube
Highlights
UMT-S Dog 65.93 model | metrics
UMT-S Gymnastics 75.20 model | metrics
UMT-S Parkour 81.64 model | metrics
UMT-S Skating 71.81 model | metrics
UMT-S Skiing 72.27 model | metrics
UMT-S Surfing 82.71 model | metrics
TVSum UMT-S VT 87.54 model | metrics
UMT-S VU 81.51 model | metrics
UMT-S GA 88.22 model | metrics
UMT-S MS 78.81 model | metrics
UMT-S PK 81.42 model | metrics
UMT-S PR 86.96 model | metrics
UMT-S FM 75.96 model | metrics
UMT-S BK 86.89 model | metrics
UMT-S BT 84.42 model | metrics
UMT-S DS 79.63 model | metrics

Here, w/ PT means initializing the model using pre-trained weights on ASR captions. V, A, and O indicate video, audio, and optical flow, respectively.

Citation

If you find this project useful for your research, please kindly cite our paper.

@inproceedings{liu2022umt,
  title={UMT: Unified Multi-modal Transformers for Joint Video Moment Retrieval and Highlight Detection},
  author={Liu, Ye and Li, Siyuan and Wu, Yang and Chen, Chang Wen and Shan, Ying and Qie, Xiaohu},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2022}
}
Owner
Applied Research Center (ARC), Tencent PCG
Applied Research Center (ARC), Tencent PCG
YOLOX-CondInst - Implement CondInst which is a instances segmentation method on YOLOX

YOLOX CondInst -- YOLOX 实例分割 前言 本项目是自己学习实例分割时,复现的代码. 通过自己编程,让自己对实例分割有更进一步的了解。 若想

DDGRCF 16 Nov 18, 2022
Official PyTorch implementation of GDWCT (CVPR 2019, oral)

This repository provides the official code of GDWCT, and it is written in PyTorch. Paper Image-to-Image Translation via Group-wise Deep Whitening-and-

WonwoongCho 135 Dec 02, 2022
Godot RL Agents is a fully Open Source packages that allows video game creators

Godot RL Agents The Godot RL Agents is a fully Open Source packages that allows video game creators, AI researchers and hobbiest the opportunity to le

Edward Beeching 326 Dec 30, 2022
Permeability Prediction Via Multi Scale 3D CNN

Permeability-Prediction-Via-Multi-Scale-3D-CNN Data: The raw CT rock cores are obtained from the Imperial Colloge portal. The CT rock cores are sub-sa

Mohamed Elmorsy 2 Jul 06, 2022
This project aims to be a handler for input creation and running of multiple RICEWQ simulations.

What is autoRICEWQ? This project aims to be a handler for input creation and running of multiple RICEWQ simulations. What is RICEWQ? From the descript

Yass Fuentes 1 Feb 01, 2022
Predicting 10 different clothing types using Xception pre-trained model.

Predicting-Clothing-Types Predicting 10 different clothing types using Xception pre-trained model from Keras library. It is reimplemented version from

AbdAssalam Ahmad 3 Dec 29, 2021
🏎️ Accelerate training and inference of 🤗 Transformers with easy to use hardware optimization tools

Hugging Face Optimum 🤗 Optimum is an extension of 🤗 Transformers, providing a set of performance optimization tools enabling maximum efficiency to t

Hugging Face 842 Dec 30, 2022
ULMFiT for Genomic Sequence Data

Genomic ULMFiT This is an implementation of ULMFiT for genomics classification using Pytorch and Fastai. The model architecture used is based on the A

Karl 276 Dec 12, 2022
Source code for EquiDock: Independent SE(3)-Equivariant Models for End-to-End Rigid Protein Docking (ICLR 2022)

Source code for EquiDock: Independent SE(3)-Equivariant Models for End-to-End Rigid Protein Docking (ICLR 2022) Please cite "Independent SE(3)-Equivar

Octavian Ganea 154 Jan 02, 2023
Official implementation of SIGIR'2021 paper: "Sequential Recommendation with Graph Neural Networks".

SURGE: Sequential Recommendation with Graph Neural Networks This is our TensorFlow implementation for the paper: Sequential Recommendation with Graph

FIB LAB, Tsinghua University 53 Dec 26, 2022
Code for our paper "Sematic Representation for Dialogue Modeling" in ACL2021

AMR-Dialogue An implementation for paper "Semantic Representation for Dialogue Modeling". You may find our paper here. Requirements python 3.6 pytorch

xfbai 45 Dec 26, 2022
Pywonderland - A tour in the wonderland of math with python.

A Tour in the Wonderland of Math with Python A collection of python scripts for drawing beautiful figures and animating interesting algorithms in math

Zhao Liang 4.1k Jan 03, 2023
A FAIR dataset of TCV experimental results for validating edge/divertor turbulence models.

TCV-X21 validation for divertor turbulence simulations Quick links Intro Welcome to TCV-X21. We're glad you've found us! This repository is designed t

0 Dec 18, 2021
Official project website for the CVPR 2021 paper "Exploring intermediate representation for monocular vehicle pose estimation"

EgoNet Official project website for the CVPR 2021 paper "Exploring intermediate representation for monocular vehicle pose estimation". This repo inclu

Shichao Li 138 Dec 09, 2022
A python library for face detection and features extraction based on mediapipe library

FaceAnalyzer A python library for face detection and features extraction based on mediapipe library Introduction FaceAnalyzer is a library based on me

Saifeddine ALOUI 14 Dec 30, 2022
AI创造营 :Metaverse启动机之重构现世,结合PaddlePaddle 和 Wechaty 创造自己的聊天机器人

paddle-wechaty-Zodiac AI创造营 :Metaverse启动机之重构现世,结合PaddlePaddle 和 Wechaty 创造自己的聊天机器人 12星座若穿越科幻剧,会拥有什么超能力呢?快来迎接你的专属超能力吧! 现在很多年轻人都喜欢看科幻剧,像是复仇者系列,里面有很多英雄、超

105 Dec 22, 2022
This repository collects 100 papers related to negative sampling methods.

Negative-Sampling-Paper This repository collects 100 papers related to negative sampling methods, covering multiple research fields such as Recommenda

RUCAIBox 119 Dec 29, 2022
This project aims to explore the deployment of Swin-Transformer based on TensorRT, including the test results of FP16 and INT8.

Swin Transformer This project aims to explore the deployment of SwinTransformer based on TensorRT, including the test results of FP16 and INT8. Introd

maggiez 87 Dec 21, 2022
Code for our paper Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation

CorDA Code for our paper Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation Prerequisite Please create and activate the follo

Qin Wang 60 Nov 30, 2022
Official implementation for the paper "SAPE: Spatially-Adaptive Progressive Encoding for Neural Optimization".

SAPE Project page Paper Official implementation for the paper "SAPE: Spatially-Adaptive Progressive Encoding for Neural Optimization". Environment Cre

36 Dec 09, 2022