ProteinBERT is a universal protein language model pretrained on ~106M proteins from the UniRef90 dataset.

Overview

What is ProteinBERT?

ProteinBERT is a universal protein language model pretrained on ~106M proteins from the UniRef90 dataset. Through its Python API, the pretrained model can be fine-tuned on any protein-related task in a matter of minutes. Based on our experiments with a wide range of benchmarks, ProteinBERT usually achieves state-of-the-art performance. ProteinBERT is built on TenforFlow/Keras.

ProteinBERT's deep-learning architecture is inspired by BERT, but it contains several innovations such as its global-attention layers that grow only lineraly with sequence length (compared to self-attention's quadratic growth). As a result, the model can process protein sequences of almost any length, includng extremely long protein sequences (of over tens of thousands of amino acids).

The model takes protein sequences as inputs, and can also take protein GO annotations as additional inputs (to help the model infer about the function of the input protein and update its internal representations and outputs accordingly). This package provides seamless access to a pretrained state that has been produced by training the model for 28 days over ~670M records (i.e. ~6.4 iterations over the entire training dataset of ~106M records). For users interested in pretraining the model from scratch, the package also includes scripts for that.

Installation

Dependencies

ProteinBERT requires Python 3.

Below are the Python packages required by ProteinBERT, which are automatically installed with it (and the versions of these packages that were tested with ProteinBERT 1.0.0):

  • tensorflow (2.4.0)
  • tensorflow_addons (0.12.1)
  • numpy (1.20.1)
  • pandas (1.2.3)
  • h5py (3.2.1)
  • lxml (4.3.2)
  • pyfaidx (0.5.8)

Install ProteinBERT

Just run:

pip install protein-bert

Alternatively, clone this repository and run:

python setup.py install

Using ProteinBERT

Fine-tuning ProteinBERT is very easy. You can see some working examples in this notebook.

Pretraining ProteinBERT from scratch

If, instead of using the existing pretrained model weights, you would like to train it from scratch, then follow the steps below. We warn you however that this is a long process (we pretrained the current model for a whole month), and it also requires a lot of storage (>1TB).

Step 1: Create the UniRef dataset

ProteinBERT is pretrained on a dataset derived from UniRef90. Follow these steps to produce this dataset:

  1. First, choose a working directory with sufficient (>1TB) free storage.
cd /some/workdir
  1. Download the metadata of GO from CAFA and extract it.
wget https://www.biofunctionprediction.org/cafa-targets/cafa4ontologies.zip
mkdir cafa4ontologies
unzip cafa4ontologies.zip -d cafa4ontologies/
  1. Download UniRef90, as both XML and FASTA.
wget ftp://ftp.uniprot.org/pub/databases/uniprot/uniref/uniref90/uniref90.xml.gz
wget ftp://ftp.uniprot.org/pub/databases/uniprot/uniref/uniref90/uniref90.fasta.gz
gunzip uniref90.fasta.gz
  1. Use the create_uniref_db script provided by ProteinBERT to extract the GO annotations associated with UniRef's records into an SQLite database (and a CSV file with the metadata of these GO annotations). Since this is a long process (which can take up to a few days), it is recommended to run this in the background (e.g. using nohup).
nohup create_uniref_db --uniref-xml-gz-file=./uniref90.xml.gz --go-annotations-meta-file=./cafa4ontologies/go.txt --output-sqlite-file=./uniref_proteins_and_annotations.db --output-go-annotations-meta-csv-file=./go_annotations.csv >&! ./log_create_uniref_db.txt &
  1. Create the final dataset (in the H5 format) by merging the database of GO annotations with the protein sequences using the create_uniref_h5_dataset script provided by ProteinBERT. This is also a long process that should be let to run in the background.
nohup create_uniref_h5_dataset --protein-annotations-sqlite-db-file=./uniref_proteins_and_annotations.db --protein-fasta-file=./uniref90.fasta --go-annotations-meta-csv-file=./go_annotations.csv --output-h5-dataset-file=./dataset.h5 --min-records-to-keep-annotation=100 >&! ./log_create_uniref_h5_dataset.txt &
  1. Finally, use ProteinBERT's set_h5_testset script to designate which of the dataset records will be considered part of the test set (so that their GO annotations are not used during pretraining). If you are planning to evaluate your model on certain downstream benchmarks, it is recommended that any UniRef record similar to a test-set protein in these benchmark will be considered part of the pretraining's test set. You can use BLAST to find all of these UniRef records and provide them to set_h5_testset through the flag --uniprot-ids-file=./uniref_90_seqs_matching_test_set_seqs.txt, where the provided text file contains the UniProt IDs of the relevant records, one per line (e.g. A0A009EXK6_ACIBA).
set_h5_testset --h5-dataset-file=./dataset.h5

Step 2: Pretrain ProteinBERT on the UniRef dataset

Once you have the dataset ready, the pretrain_proteinbert script will train a ProteinBERT model on that dataset.

Basic use of the pretraining script looks as follows:

mkdir -p ~/proteinbert_models/new
nohup pretrain_proteinbert --dataset-file=./dataset.h5 --autosave-dir=~/proteinbert_models/new >&! ~/proteinbert_models/log_new_pretraining.txt &

By running that, ProteinBERT will continue to train indefinitely. Therefore, make sure to run it in the background using nohup or other options. Every given number of epochs (determined as 100 batches) the model state will be automatically saved into the specified autosave directory. If this process is interrupted and you wish to resume pretraining from a given snapshot (e.g. the most up-to-date state file within the autosave dir) use the --resume-from flag (provide it the state file that you wish to resume from).

pretrain_proteinbert has MANY options and hyper-parameters that are worth checking out:

pretrain_proteinbert --help

Step 3: Use your pretrained model state when fine-tuning ProteinBERT

Normally the function load_pretrained_model is used to load the existing pretrained model state. If you wish to load your own pretrained model state instead, then use the load_pretrained_model_from_dump function instead.

License

ProteinBERT is a free open-source project available under the MIT License.

Cite us

If you use ProteinBERT as part of a work contributing to a scientific publication, we ask that you cite our paper: Brandes, N., Ofer, D., Peleg, Y., Rappoport, N. & Linial, M. ProteinBERT: A universal deep-learning model of protein sequence and function. bioRxiv (2021). https://doi.org/10.1101/2021.05.24.445464

edge-SR: Super-Resolution For The Masses

edge-SR: Super Resolution For The Masses Citation Pablo Navarrete Michelini, Yunhua Lu and Xingqun Jiang. "edge-SR: Super-Resolution For The Masses",

Pablo 40 Nov 10, 2022
Model parallel transformers in JAX and Haiku

Table of contents Mesh Transformer JAX Updates Pretrained Models GPT-J-6B Links Acknowledgments License Model Details Zero-Shot Evaluations Architectu

Ben Wang 4.9k Jan 04, 2023
This is a really simple text-to-speech app made with python and tkinter.

Tkinter Text-to-Speech App by Souvik Roy This is a really simple tkinter app which converts the text you have entered into a speech. It is created wit

Souvik Roy 1 Dec 21, 2021
Spert NLP Relation Extraction API deployed with torchserve for inference

URLMask Python program for Linux users to change a URL to ANY domain. A program than can take any url and mask it to any domain name you like. E.g. ne

Zichu Chen 1 Nov 24, 2021
Creating an Audiobook (mp3 file) using a Ebook (epub) using BeautifulSoup and Google Text to Speech

epub2audiobook Creating an Audiobook (mp3 file) using a Ebook (epub) using BeautifulSoup and Google Text to Speech Input examples qual a pasta do seu

7 Aug 25, 2022
Anuvada: Interpretable Models for NLP using PyTorch

Anuvada: Interpretable Models for NLP using PyTorch So, you want to know why your classifier arrived at a particular decision or why your flashy new d

EDGE 102 Oct 01, 2022
text to speech toolkit. 好用的中文语音合成工具箱,包含语音编码器、语音合成器、声码器和可视化模块。

ttskit Text To Speech Toolkit: 语音合成工具箱。 安装 pip install -U ttskit 注意 可能需另外安装的依赖包:torch,版本要求torch=1.6.0,=1.7.1,根据自己的实际环境安装合适cuda或cpu版本的torch。 ttskit的

KDD 483 Jan 04, 2023
test

Lidar-data-decode In this project, you can decode your lidar data frame(pcap file) and make your own datasets(test dataset) in Windows without any hug

46 Dec 05, 2022
Fake Shakespearean Text Generator

Fake Shakespearean Text Generator This project contains an impelementation of stateful Char-RNN model to generate fake shakespearean texts. Files and

Recep YILDIRIM 1 Feb 15, 2022
:P Some basic stuff I'm gonna use for my upcoming Agile Software Development and Devops

reverse-image-search-py bash script.sh img_name.jpg Requirements pip install requests pip install pyshorteners Dry run [ Sudhanva M 3 Dec 18, 2021

Train BPE with fastBPE, and load to Huggingface Tokenizer.

BPEer Train BPE with fastBPE, and load to Huggingface Tokenizer. Description The BPETrainer of Huggingface consumes a lot of memory when I am training

Lizhuo 1 Dec 23, 2021
Conditional probing: measuring usable information beyond a baseline

Conditional probing: measuring usable information beyond a baseline

John Hewitt 20 Dec 15, 2022
a test times augmentation toolkit based on paddle2.0.

Patta Image Test Time Augmentation with Paddle2.0! Input | # input batch of images / / /|\ \ \ # apply

AgentMaker 110 Dec 03, 2022
KoBART model on huggingface transformers

KoBART-Transformers SKT에서 공개한 KoBART를 편리하게 사용할 수 있게 transformers로 포팅하였습니다. Install (Optional) BartModel과 PreTrainedTokenizerFast를 이용하면 설치하실 필요 없습니다. p

Hyunwoong Ko 58 Dec 07, 2022
Graphical user interface for Argos Translate

Argos Translate GUI Website | GitHub | PyPI Graphical user interface for Argos Translate. Install pip3 install argostranslategui

Argos Open Tech 16 Dec 07, 2022
Simple python code to fix your combo list by removing any text after a separator or removing duplicate combos

Combo List Fixer A simple python code to fix your combo list by removing any text after a separator or removing duplicate combos Removing any text aft

Hamidreza Dehghan 3 Dec 05, 2022
Seonghwan Kim 24 Sep 11, 2022
Simple Python library, distributed via binary wheels with few direct dependencies, for easily using wav2vec 2.0 models for speech recognition

Wav2Vec2 STT Python Beta Software Simple Python library, distributed via binary wheels with few direct dependencies, for easily using wav2vec 2.0 mode

David Zurow 22 Dec 29, 2022
A NLP program: tokenize method, PoS Tagging with deep learning

IRIS NLP SYSTEM A NLP program: tokenize method, PoS Tagging with deep learning Report Bug · Request Feature Table of Contents About The Project Built

Zakaria 7 Dec 13, 2022
auto_code_complete is a auto word-completetion program which allows you to customize it on your need

auto_code_complete v1.3 purpose and usage auto_code_complete is a auto word-completetion program which allows you to customize it on your needs. the m

RUO 2 Feb 22, 2022