Node-level Graph Regression with Deep Gaussian Process Models

Overview

Node-level Graph Regression with Deep Gaussian Process Models

Prerequests

our implementation is mainly based on tensorflow 1.x and gpflow 1.x:

python 3.x (3.7 tested)
conda install tensorflow-gpu==1.15
pip install keras==2.3.1
pip install gpflow==1.5
pip install gpuinfo

Besides, some basic packages like numpy are also needed. It's maybe easy to wrap the codes for TF2.0 and GPflow2, but it's not tested yet.

Specification

Source code and experiment result are both provided. Unzip two archive files before using experiment notebooks.

Files

  • dgp_graph/: cores codes of the DGPG model.
    • impl_parallel.py: a fast node-level computation parallelized implementation, invoked by all experiments.
    • my_op.py: some custom tensorflow operations used in the implementation.
    • impl.py: a basic loop-based implementation, easy to understand but not practical, leaving just for calibration.
  • data/: datasets.
  • doubly_stochastic_dgp/: codes from repository DGP
  • compatible/: codes to make the DGP source codes compatible with gpflow1.5.
  • gpflow_monitor/: monitoring tool for gpflow models, from this repo.
  • GRN inference: code and data for the GRN inference experiment.
  • demo_city45.ipynb: jupyter notebooks for city45 dataset experiment.
  • experiments.zip: jupyter notebooks for other experiments.
  • results.zip: contains original jupyter notebooks results. (exported as HTML files for archive)
  • run_toy.sh: shell script to run additional experiment.
  • toy_main.py: code for additional experiment (Traditional ML methods and DGPG with linear kernel).
  • ER-0.1.ipynb: example script for analyzing time-varying graph structures.

Experiments

The experiments are based on python src files and demonstrated by jupyter notebooks. The source of an experiment is under directory src/experiments.zip and the corresponding result is exported as a static HTML file stored in the directory results.zip. They are organized by dataset names:

  1. Synthetic Datasets

For theoretical analysis.

  • demo_toy_run1.ipynb

  • demo_toy_run2.ipynb

  • demo_toy_run3.ipynb

  • demo_toy_run4.ipynb

  • demo_toy_run5.ipynb

For graph signal analysis on time-varying graphs.

  • ER-0.05.ipynb

  • ER-0.2.ipynb

  • RWP-0.1.ipynb

  • RWP-0.2.ipynb

  • RWP-0.3.ipynb

  1. Small Datasets
  • demo_city45.ipynb
  • demo_city45_linear.ipynb (linear kernel)
  • demo_city45_baseline.ipynb (traditional regression methods)
  • demo_etex.ipynb
  • demo_etex_linear.ipynb
  • demo_etex_baseline.ipynb
  • demo_fmri.ipynb
  • demo_fmri_linear.ipynb
  • demo_fmri_baseline.ipynb
  1. Large Datasets (traffic flow prediction)
  • LA
    • demo_la_15min.ipynb
    • demo_la_30min.ipynb
    • demo_la_60min.ipynb
  • BAY
    • demo_bay_15min.ipynb
    • demo_bay_30min.ipynb
    • demo_bay_60min.ipynb
Code for project: "Learning to Minimize Remainder in Supervised Learning".

Learning to Minimize Remainder in Supervised Learning Code for project: "Learning to Minimize Remainder in Supervised Learning". Requirements and Envi

Yan Luo 0 Jul 18, 2021
Code associated with the paper "Deep Optics for Single-shot High-dynamic-range Imaging"

Deep Optics for Single-shot High-dynamic-range Imaging Code associated with the paper "Deep Optics for Single-shot High-dynamic-range Imaging" CVPR, 2

Stanford Computational Imaging Lab 40 Dec 12, 2022
Simple implementation of OpenAI CLIP model in PyTorch.

It was in January of 2021 that OpenAI announced two new models: DALL-E and CLIP, both multi-modality models connecting texts and images in some way. In this article we are going to implement CLIP mod

Moein Shariatnia 226 Jan 05, 2023
TensorFlow implementation of AlexNet and its training and testing on ImageNet ILSVRC 2012 dataset

AlexNet training on ImageNet LSVRC 2012 This repository contains an implementation of AlexNet convolutional neural network and its training and testin

Matteo Dunnhofer 161 Nov 25, 2022
This is the repository for The Machine Learning Workshops, published by AI DOJO

This is the repository for The Machine Learning Workshops, published by AI DOJO. It contains all the workshop's code with supporting project files necessary to work through the code.

AI Dojo 12 May 06, 2022
Moer Grounded Image Captioning by Distilling Image-Text Matching Model

Moer Grounded Image Captioning by Distilling Image-Text Matching Model Requirements Python 3.7 Pytorch 1.2 Prepare data Please use git clone --recurse

YE Zhou 60 Dec 16, 2022
Load What You Need: Smaller Multilingual Transformers for Pytorch and TensorFlow 2.0.

Smaller Multilingual Transformers This repository shares smaller versions of multilingual transformers that keep the same representations offered by t

Geotrend 79 Dec 28, 2022
Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance

Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance Project Page | Paper | Data This repository contains an implementatio

Lior Yariv 521 Dec 30, 2022
A state of the art of new lightweight YOLO model implemented by TensorFlow 2.

CSL-YOLO: A New Lightweight Object Detection System for Edge Computing This project provides a SOTA level lightweight YOLO called "Cross-Stage Lightwe

Miles Zhang 54 Dec 21, 2022
LSTM built using Keras Python package to predict time series steps and sequences. Includes sin wave and stock market data

LSTM Neural Network for Time Series Prediction LSTM built using the Keras Python package to predict time series steps and sequences. Includes sine wav

Jakob Aungiers 4.1k Jan 02, 2023
A3C LSTM Atari with Pytorch plus A3G design

NEWLY ADDED A3G A NEW GPU/CPU ARCHITECTURE OF A3C FOR SUBSTANTIALLY ACCELERATED TRAINING!! RL A3C Pytorch NEWLY ADDED A3G!! New implementation of A3C

David Griffis 532 Jan 02, 2023
Back to Basics: Efficient Network Compression via IMP

Back to Basics: Efficient Network Compression via IMP Authors: Max Zimmer, Christoph Spiegel, Sebastian Pokutta This repository contains the code to r

IOL Lab @ ZIB 1 Nov 19, 2021
Automate issue discovery for your projects against Lightning nightly and releases.

Automated Testing for Lightning EcoSystem Projects Automate issue discovery for your projects against Lightning nightly and releases. You get CPUs, Mu

Pytorch Lightning 41 Dec 24, 2022
BasicRL: easy and fundamental codes for deep reinforcement learning。It is an improvement on rainbow-is-all-you-need and OpenAI Spinning Up.

BasicRL: easy and fundamental codes for deep reinforcement learning BasicRL is an improvement on rainbow-is-all-you-need and OpenAI Spinning Up. It is

RayYoh 12 Apr 28, 2022
Source code for Fixed-Point GAN for Cloud Detection

FCD: Fixed-Point GAN for Cloud Detection PyTorch source code of Nyborg & Assent (2020). Abstract The detection of clouds in satellite images is an ess

Joachim Nyborg 8 Dec 22, 2022
Code for "Adversarial attack by dropping information." (ICCV 2021)

AdvDrop Code for "AdvDrop: Adversarial Attack to DNNs by Dropping Information(ICCV 2021)." Human can easily recognize visual objects with lost informa

Ranjie Duan 52 Nov 10, 2022
From Canonical Correlation Analysis to Self-supervised Graph Neural Networks

Code for CCA-SSG model proposed in the NeurIPS 2021 paper From Canonical Correlation Analysis to Self-supervised Graph Neural Networks.

Hengrui Zhang 44 Nov 27, 2022
An official implementation of "Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation" (CVPR 2021) in PyTorch.

BANA This is the implementation of the paper "Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation". For more inf

CV Lab @ Yonsei University 59 Dec 12, 2022
Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included.

pixel_character_generator Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included. Dataset TinyHero D

Agnieszka Mikołajczyk 88 Nov 17, 2022
Empirical Study of Transformers for Source Code & A Simple Approach for Handling Out-of-Vocabulary Identifiers in Deep Learning for Source Code

Transformers for variable misuse, function naming and code completion tasks The official PyTorch implementation of: Empirical Study of Transformers fo

Bayesian Methods Research Group 56 Nov 15, 2022