Face detection using deep learning.

Overview

Face Detection Docker Solution Using Faster R-CNN



Dockerface is a deep learning face detector. It deploys a trained Faster R-CNN network on Caffe through an easy to use docker image. Bring your videos and images, run dockerface and obtain videos and images with bounding boxes of face detections and an easy to use face detection annotation text file.

The docker image is large for now because OpenCV has to be compiled and stored in the image to be able to use video and it takes up a lot of space.

Technical details and some experiments are described in the Arxiv Tech Report.

Citing Dockerface

If you find Dockerface useful in your research please consider citing:

@ARTICLE{2017arXiv170804370R,
   author = {{Ruiz}, N. and {Rehg}, J.~M.},
    title = "{Dockerface: an easy to install and use Faster R-CNN face detector in a Docker container}",
  journal = {ArXiv e-prints},
archivePrefix = "arXiv",
   eprint = {1708.04370},
 primaryClass = "cs.CV",
 keywords = {Computer Science - Computer Vision and Pattern Recognition},
     year = 2017,
    month = aug,
   adsurl = {http://adsabs.harvard.edu/abs/2017arXiv170804370R},
  adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}

Instructions

Install NVIDIA CUDA (8 - preferably) and cuDNN (v5 - preferably)

https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cudnn

Install docker

https://docs.docker.com/engine/installation/

Install nvidia-docker

wget -P /tmp https://github.com/NVIDIA/nvidia-docker/releases/download/v1.0.1/nvidia-docker_1.0.1-1_amd64.deb
sudo dpkg -i /tmp/nvidia-docker*.deb && rm /tmp/nvidia-docker*.deb

Go to your working folder and create a directory called data, your videos and images should go here. Also create a folder called output.

cd $WORKING_DIR
mkdir data
mkdir output

Run the docker container

sudo nvidia-docker run -it -v $PWD/data:/opt/py-faster-rcnn/edata -v $PWD/output/video:/opt/py-faster-rcnn/output/video -v $PWD/output/images:/opt/py-faster-rcnn/output/images natanielruiz/dockerface:latest

Now we have to recompile Caffe for it to work on your own machine.

cd caffe-fast-rcnn
rm -rf build
mkdir build
cd build
cmake -DUSE_CUDNN=1 ..
make -j20 && make pycaffe
cd ../..

Finally use this command to process a video

python tools/run_face_detection_on_video.py --gpu 0 --video edata/YOUR_VIDEO_FILENAME --output_string STRING_TO_BE_APPENDED_TO_OUTPUTFILE_NAME --conf_thresh CONFIDENCE_THRESHOLD_FOR_DETECTIONS

Use this command to process an image

python tools/run_face_detection_on_image.py --gpu 0 --image edata/YOUR_IMAGE_FILENAME --output_string STRING_TO_BE_APPENDED_TO_OUTPUTFILE_NAME --conf_thresh CONFIDENCE_THRESHOLD_FOR_DETECTIONS

Also if you are looking to conveniently process all images in one folder use this command

python tools/facedetection_images.py --gpu 0 --image_folder edata/IMAGE_FOLDER_NAME --output_folder OUTPUT_FOLDER_PATH --conf_thresh CONFIDENCE_THRESHOLD_FOR_DETECTIONS

The default confidence threshold is 0.85 which works for high quality videos or images where the faces are clearly visible. You can play around with this value.

The columns contained in the output text files are:

For videos:

frame_number x_min y_min x_max y_max confidence_score

For images:

image_path x_min y_min x_max y_max confidence_score

Where (x_min,y_min) denote the coordinates of the upper-left corner of the bounding box in image intrinsic coordinates and (x_max, y_max) denote the coordinates of the lower-right corner of the bounding box in image intrinsic coordinates. (ref. https://www.mathworks.com/help/images/image-coordinate-systems.html) confidence_score denotes the probability output of the model that the detection is correct (it is a number included in [0,1])

Voila, that easy!

After you're done with the docker container you can exit.

exit

You want to restart and re-attach to this same docker container so as to avoid compiling Caffe again. To do this first get the id for that container.

sudo docker ps -a

It should be the last one that was launched. Take note of CONTAINER ID. Then start and attach to that container.

sudo docker start CONTAINER_ID
sudo docker attach CONTAINER_ID

You can now continue processing videos.

Nataniel Ruiz and James M. Rehg
Georgia Institute of Technology

Credits: Original dockerface logo made by Freepik from Flaticon is licensed by Creative Commons BY 3.0, modified by Nataniel Ruiz.

Owner
Nataniel Ruiz
PhD candidate at Boston University doing Computer Vision and ML. M.S. from Georgia Tech, BA/M.S. from Ecole Polytechnique
Nataniel Ruiz
Official PyTorch implementation of MAAD: A Model and Dataset for Attended Awareness

MAAD: A Model for Attended Awareness in Driving Install // Datasets // Training // Experiments // Analysis // License Official PyTorch implementation

7 Oct 16, 2022
Motion planning environment for Sampling-based Planners

Sampling-Based Motion Planners' Testing Environment Sampling-based motion planners' testing environment (sbp-env) is a full feature framework to quick

Soraxas 23 Aug 23, 2022
Occlusion robust 3D face reconstruction model in CFR-GAN (WACV 2022)

Occlusion Robust 3D face Reconstruction Yeong-Joon Ju, Gun-Hee Lee, Jung-Ho Hong, and Seong-Whan Lee Code for Occlusion Robust 3D Face Reconstruction

Yeongjoon 31 Dec 19, 2022
xitorch: differentiable scientific computing library

xitorch is a PyTorch-based library of differentiable functions and functionals that can be widely used in scientific computing applications as well as deep learning.

24 Apr 15, 2021
Implementation for Homogeneous Unbalanced Regularized Optimal Transport

HUROT: An Homogeneous formulation of Unbalanced Regularized Optimal Transport. This repository provides code related to this preprint. This is an alph

Théo Lacombe 1 Feb 17, 2022
Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021.

NL-CSNet-Pytorch Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021. Note: this repo only shows the strategy of

WenxueCui 7 Nov 07, 2022
Implementation of CoCa, Contrastive Captioners are Image-Text Foundation Models, in Pytorch

CoCa - Pytorch Implementation of CoCa, Contrastive Captioners are Image-Text Foundation Models, in Pytorch. They were able to elegantly fit in contras

Phil Wang 565 Dec 30, 2022
Repo for EchoVPR: Echo State Networks for Visual Place Recognition

EchoVPR Repo for EchoVPR: Echo State Networks for Visual Place Recognition Currently under development Dirs: data: pre-collected hidden representation

Anil Ozdemir 4 Oct 04, 2022
Learn the Deep Learning for Computer Vision in three steps: theory from base to SotA, code in PyTorch, and space-repetition with Anki

DeepCourse: Deep Learning for Computer Vision arthurdouillard.com/deepcourse/ This is a course I'm giving to the French engineering school EPITA each

Arthur Douillard 113 Nov 29, 2022
Fast, flexible and easy to use probabilistic modelling in Python.

Please consider citing the JMLR-MLOSS Manuscript if you've used pomegranate in your academic work! pomegranate is a package for building probabilistic

Jacob Schreiber 3k Dec 29, 2022
Implements Gradient Centralization and allows it to use as a Python package in TensorFlow

Gradient Centralization TensorFlow This Python package implements Gradient Centralization in TensorFlow, a simple and effective optimization technique

Rishit Dagli 101 Nov 01, 2022
Official Implementation of VAT

Semantic correspondence Few-shot segmentation Cost Aggregation Is All You Need for Few-Shot Segmentation For more information, check out project [Proj

Hamacojr 114 Dec 27, 2022
This project demonstrates the use of neural networks and computer vision to create a classifier that interprets the Brazilian Sign Language.

LIBRAS-Image-Classifier This project demonstrates the use of neural networks and computer vision to create a classifier that interprets the Brazilian

Aryclenio Xavier Barros 26 Oct 14, 2022
A Python library for unevenly-spaced time series analysis

traces A Python library for unevenly-spaced time series analysis. Why? Taking measurements at irregular intervals is common, but most tools are primar

Datascope Analytics 516 Dec 29, 2022
Source code for PairNorm (ICLR 2020)

PairNorm Official pytorch source code for PairNorm paper (ICLR 2020) This code requires pytorch_geometric=1.3.2 usage For SGC, we use original PairNo

62 Dec 08, 2022
Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR)

Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR) This is the official implementation of our paper Personalized Tran

Yongchun Zhu 81 Dec 29, 2022
Simple image captioning model - CLIP prefix captioning.

Simple image captioning model - CLIP prefix captioning.

688 Jan 04, 2023
Artificial Intelligence playing minesweeper 🤖

AI playing Minesweeper ✨ Minesweeper is a single-player puzzle video game. The objective of the game is to clear a rectangular board containing hidden

Vaibhaw 8 Oct 17, 2022
This framework implements the data poisoning method found in the paper Adversarial Examples Make Strong Poisons

Adversarial poison generation and evaluation. This framework implements the data poisoning method found in the paper Adversarial Examples Make Strong

31 Nov 01, 2022
Generative Adversarial Networks for High Energy Physics extended to a multi-layer calorimeter simulation

CaloGAN Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters with Generative Adversarial Networks. This repository c

Deep Learning for HEP 101 Nov 13, 2022