Learning trajectory representations using self-supervision and programmatic supervision.

Overview

Trajectory Embedding for Behavior Analysis (TREBA)

Implementation from the paper:

Jennifer J. Sun, Ann Kennedy, Eric Zhan, David J. Anderson, Yisong Yue, Pietro Perona. Task Programming: Learning Data Efficient Behavior Representations. In Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

Our learned trajectory embeddings can be applied to a variety of behavior analysis tasks. Here we show instructions on training TREBA, and applying it to behavior classification.

Results on Fly Dataset

On the data split of the Fly v. Fly dataset provided in the Quick Start instructions below.

Input Features MAP @ 10% Data MAP @ 50% Data MAP @ 100% Data
Pose 0.348 0.519 0.586
Pose + TREBA (TVAE only) 0.419 0.635 0.722
Pose + TREBA (w/ Task Programming) 0.650 0.707 0.750
Domain-specific features 0.774 0.829 0.868
Domain-specific features + TREBA (TVAE only) 0.791 0.852 0.880
Domain-specific features + TREBA (w/ Task Programming) 0.820 0.868 0.886

Note that (TVAE only) corresponds to using trajectory generation losses from a Trajectory-VAE setup only, and (w/ Task Programming) corresponds to the decoder setup with programmed tasks using contrastive and consistency losses described in our paper.

Results on Mouse Dataset

Coming soon!

Since the data used in the mouse experiments in our paper is from an internal dataset, we will update the task programming results here from the released CalMS21 dataset. Link to download the dataset: https://data.caltech.edu/records/1991.

Quick Start

Follow these instructions if you would like to quickly try out training TREBA and using TREBA features in downstream behavior classification. Please see these additional instructions on setting up a new dataset and for setting up new configurations

Development Environment

Make sure you have the following dependencies installed before proceeding:

  • Python 3+ distribution
  • Training TREBA:
    • PyTorch >= 0.4.0
  • Downstream classification:
    • Tensorflow >= 2.0.0 (GPU not necessary, can install easily with pip install tensorflow or conda install tensorflow)

Dataset

The original Fly vs. Fly dataset is available to download here (Fly vs. Fly dataset paper). We provide the processed Fly vs. Fly dataset with the dataset split used our paper at the following link: https://drive.google.com/drive/folders/1Lxhexdb_XuwryLSb9JZqJThJAF6IKHs_?usp=sharing.

There are three folders:

  • data_for_classification contains the keypoints and hand-designed features for the fly dataset in train,val,test splits. This is only needed to train the downstream behavior classifiers.
  • fly_pre_trained_features contains the TREBA features extracted for fly classification trained with task programming and 13 programs. This is TREBA features extracted from a trained model that is ready for use.
  • data_for_training_treba_and_feature_extraction contains the fly dataset without labels for training the TREBA model, as well as the data in the form to use for feature extraction. This is the data needed to train the TREBA model.

Running TREBA

There are two ways to run our model:

  1. Training from scratch: Use the data in data_for_training_treba_and_feature_extraction to train TREBA (around 2 days on one GPU) and extract features (< 1 hour). Use the extracted features to train classifier models (< 1 hour for 1 training amount and 1 repeat, around 1 day on GPU for all training amounts (8 total) and repeats (9 total))
  2. Using pretrained features: This step starts from already extracted TREBA features. Here, we use the data in fly_pre_trained_features to train classifier models (< 1 hour for 1 training amount and 1 repeat, around 1 day on GPU for all training amounts (8 total) and repeats (9 total))

Instructions for Training TREBA

You may skip this section if you start from the already extracted embeddings in fly_pre_trained_features.

If you wish to train the model from scratch instead of using the extracted embeddings, use the following instructions:

  1. Download data from the "data_for_training_treba_and_feature_extraction" folder at the following link into util/datasets/fly_v1/data. https://drive.google.com/drive/folders/1Lxhexdb_XuwryLSb9JZqJThJAF6IKHs_?usp=sharing

  2. To run on GPU with device 0:

python run_single.py \
-d 0 \
--config_dir fly_treba_original \
--feature_extraction fly_train_encoding,fly_val_encoding,fly_test_encoding \
--feature_names fly_train,fly_val,fly_test

If you are running on CPU, remove -d 0 from the command.

This run will take around ~1 day on GPU.

The trained models and extracted features will be saved to saved/fly_treba_original/run_1

Instructions for Downstream Tasks (Behavior Classification)

If you wish to start from the pre-trained features, download data from the "fly_pre_trained_features" folder at the following link into saved/fly_treba_original/run_1/. https://drive.google.com/drive/folders/1Lxhexdb_XuwryLSb9JZqJThJAF6IKHs_?usp=sharing

If you already followed the previous step, the extracted features from the previous step is already saved in saved/fly_treba_original/run_1/

  1. Download data from 'data_for_classification' in the following link into util/datasets/fly_v1/data. This contains the Fly v. Fly data with behavior annotations. https://drive.google.com/drive/folders/1Lxhexdb_XuwryLSb9JZqJThJAF6IKHs_?usp=sharing

  2. From inside downstream_tasks/fly_classification, run:

python fly_classification_script.py \
--encodings fly_treba_original \
--input_type features \
--log_name fly_classification_log.txt \
--model_name fly_classification_model

(The input_type can be features for hand-designed features, or pose for detected fly poses/keypoints.)

This run will take ~1 day because by default, the code does 9 repeats of classifier training for 8 training data amounts. You can modify the first two lines for train_amount_list,repeats in fly_classifier_script to reduce the number of runs.

The final log will be saved in downstream_tasks/fly_classification.

Acknowledgments

We would like to thank the following Github repos for sharing their code, which helped development of TREBA:

Style-Consistency Repo

Supervised Contrastive Loss Repo

Neuroethology Repos

License

Please refer to our paper for details and consider citing it if you find the code useful:

@article{sun2020task,
  title={Task Programming: Learning Data Efficient Behavior Representations},
  author={Sun, Jennifer J and Kennedy, Ann and Zhan, Eric and Anderson, David J and Yue, Yisong and Perona, Pietro},
  journal={arXiv preprint arXiv:2011.13917},
  year={2020}
}

TREBA is available under the CC BY-NC-SA 4.0 license.

Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetune Paradigm

Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetu

3 Dec 05, 2022
Real-time object detection on Android using the YOLO network with TensorFlow

TensorFlow YOLO object detection on Android Source project android-yolo is the first implementation of YOLO for TensorFlow on an Android device. It is

Nataniel Ruiz 624 Jan 03, 2023
This is an official repository of CLGo: Learning to Predict 3D Lane Shape and Camera Pose from a Single Image via Geometry Constraints

CLGo This is an official repository of CLGo: Learning to Predict 3D Lane Shape and Camera Pose from a Single Image via Geometry Constraints An earlier

刘芮金 32 Dec 20, 2022
SSD-based Object Detection in PyTorch

SSD-based Object Detection in PyTorch 서강대학교 현대모비스 SW 프로그램에서 진행한 인공지능 프로젝트입니다. Jetson nano를 이용해 pre-trained network를 fine tuning시켜 차량 및 신호등 인식을 구현하였습니다

Haneul Kim 1 Nov 16, 2021
Code for Mining the Benefits of Two-stage and One-stage HOI Detection

Status: Archive (code is provided as-is, no updates expected) PPO-EWMA [Paper] This is code for training agents using PPO-EWMA and PPG-EWMA, introduce

OpenAI 33 Dec 15, 2022
Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning

Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning

Emile van Krieken 140 Dec 30, 2022
"Projelerle Yapay Zeka Ve Bilgisayarlı Görü" Kitabımın projeleri

"Projelerle Yapay Zeka Ve Bilgisayarlı Görü" Kitabımın projeleri Bu Github Reposundaki tüm projeler; kaleme almış olduğum "Projelerle Yapay Zekâ ve Bi

Ümit Aksoylu 4 Aug 03, 2022
Code samples for my book "Neural Networks and Deep Learning"

Code samples for "Neural Networks and Deep Learning" This repository contains code samples for my book on "Neural Networks and Deep Learning". The cod

Michael Nielsen 13.9k Dec 26, 2022
YOLOX-CondInst - Implement CondInst which is a instances segmentation method on YOLOX

YOLOX CondInst -- YOLOX 实例分割 前言 本项目是自己学习实例分割时,复现的代码. 通过自己编程,让自己对实例分割有更进一步的了解。 若想

DDGRCF 16 Nov 18, 2022
CRF-RNN for Semantic Image Segmentation - PyTorch version

This repository contains the official PyTorch implementation of the "CRF-RNN" semantic image segmentation method, published in the ICCV 2015

Sadeep Jayasumana 170 Dec 13, 2022
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

107 Dec 02, 2022
An original implementation of "MetaICL Learning to Learn In Context" by Sewon Min, Mike Lewis, Luke Zettlemoyer and Hannaneh Hajishirzi

MetaICL: Learning to Learn In Context This includes an original implementation of "MetaICL: Learning to Learn In Context" by Sewon Min, Mike Lewis, Lu

Meta Research 141 Jan 07, 2023
Udacity Suse Cloud Native Foundations Scholarship Course Walkthrough

SUSE Cloud Native Foundations Scholarship Udacity is collaborating with SUSE, a global leader in true open source solutions, to empower developers and

Shivansh Srivastava 34 Oct 18, 2022
The King is Naked: on the Notion of Robustness for Natural Language Processing

the-king-is-naked: on the notion of robustness for natural language processing AAAI2022 DISCLAIMER:This repo will be updated soon with instructions on

Iperboreo_ 1 Nov 24, 2022
Code base for NeurIPS 2021 publication titled Kernel Functional Optimisation (KFO)

KernelFunctionalOptimisation Code base for NeurIPS 2021 publication titled Kernel Functional Optimisation (KFO) We have conducted all our experiments

2 Jun 29, 2022
Multi-view 3D reconstruction using neural rendering. Unofficial implementation of UNISURF, VolSDF, NeuS and more.

Volume rendering + 3D implicit surface Showcase What? previous: surface rendering; now: volume rendering previous: NeRF's volume density; now: implici

Jianfei Guo 682 Jan 04, 2023
NitroFE is a Python feature engineering engine which provides a variety of modules designed to internally save past dependent values for providing continuous calculation.

NitroFE is a Python feature engineering engine which provides a variety of modules designed to internally save past dependent values for providing continuous calculation.

100 Sep 28, 2022
TeST: Temporal-Stable Thresholding for Semi-supervised Learning

TeST: Temporal-Stable Thresholding for Semi-supervised Learning TeST Illustration Semi-supervised learning (SSL) offers an effective method for large-

Xiong Weiyu 1 Jul 14, 2022
SlotRefine: A Fast Non-Autoregressive Model forJoint Intent Detection and Slot Filling

SlotRefine: A Fast Non-Autoregressive Model for Joint Intent Detection and Slot Filling Reference Main paper to be cited (Di Wu et al., 2020) @article

Moore 34 Nov 03, 2022
VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations

VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations 3D-aware Image Synthesis via Learning Structural and Textura

GenForce: May Generative Force Be with You 116 Dec 26, 2022