Python package to visualize and cluster partial dependence.

Overview

partial_dependence

A python library for plotting partial dependence patterns of machine learning classifiers. The technique is a black box approach to recognize sets of instances where the model makes similar decisions.

Partial dependence measures the prediction change when changing one or more input features. We will focus only on 1D and 2D partial dependence plots. For each instance in the data we can plot the prediction change as we change one or two features in defined sample ranges. Then we cluster similar plots or heatmaps, e.g., instances reacting similarly when a feature value changes, to reduce clutter.

You can install partial_dependence via

pip install partial_dependence

and import it in python using:

import partial_dependence as pdp_plot

1. Plotting clustering of partial dependence

Following we will show how the pipeline of functions works. Please refer to the inline documentation of the methods for full information.

You can also run the Jupyter notebook file to have a running example.

The visualization we are using as example are coming from a Random Forest model trained on the UCI Wine Quality Data Set. The prediction is towards the class "good wine".

1.1 Initialization

Required arguments:

  • df_test: a pandas.DataFrame containing only the features values for each instance in the test-set.

  • model: trained classifier as an object with the following properties.

    The object must have a method predict_proba(X) which takes a numpy.array of shape (n, num_feat) as input and returns a numpy.array of shape (n, len(class_array)).

  • class_array: a list of strings with all the classes name in the same order as the predictions returned by predict_proba(X).

  • class_focus: a string with the class name of the desired partial dependence.

Optional arguments:

  • num_samples: number of desired samples. Sampling a feature is done with:

    numpy.linspace(min_value, max_value, num_samples)

    where the bounds are related to min and max value for that feature in the test-set. Default value is 100.

  • scale: scale parameter vector for normalization.

  • shift: shift parameter vector for normalization.

If you need to provide your data to the model in normalized form, you have to define scale and shift such that:

transformed_data = (original_data + shift)*scale

where shift and scale are both numpy.array of shape (1,num_feat).

If the model uses directly the raw data in df_test without any transformation, do not insert any scale and shift parameters.

If our model does not use normalization, we can initialize the tool this way:

my_pdp_plot = pdp_plot.PartialDependence( my_df_test,
                                          my_model,
                                          my_labels_name,
                                          my_labels_focus )

1.2 Creating the PdpCurves object

By choosing a feature and changing it in the sample range, for each row in the test-set we can create num_samples different versions of the original instance.

Then we are able to compute prediction values for each of the different vectors.

pdp() initialize and returns a python object from the class PdpCurves() containing such predictions values.

Required argument:

  • fix: string with name of the chosen feature as reported in a column of df_test.
curves = my_pdp_plot.pdp( chosen_feature )

1.3 Getting an overview of the partial dependence

It is already possible to plot something with the function plot().

Whenever you have a PdpCurves object available, you can plot something. Here you can find a first example. The visualization is automatically saved in a png file in the same folder of the script.

my_pdp_plot.plot( curves, local_curves = True, plot_full_curves = True )

alternate text

1.4 Clustering 1D partial dependence

To call compute_clusters(), we define the integer number of desired clusters with the n_clusters argument and we provide curves.

The function returns a list of PdpCurves objects. Each element of the list is a different cluster.

curves_list_RF = my_pdp_plot.compute_clusters( curves, chosen_cluster_number )

1.5 Plotting the clustering results

Without customization, plotting the clustering is quite straightforward.

my_pdp_plot.plot( curves_list_RF )

alternate text

1.6 2D partial dependence heatmaps

It is possible to visualize the increase/decrease in prediction of instances when changing two features at the same time. For a single instance the samples vary around the original pair of values. You can specify the desired instance by providing the row index integer from df_test. In this case we are taking the instance with index 88.

instance_heatmap = my_pdp_plot.pdp_2D("alcohol", "density", instances = 88)
my_pdp_plot.plot_heatmap(instance_heatmap)

alternate text

In case you want to visualize the average 2D partial dependence over a set of instances, just provide a list of integers. The color will resemble the average increase/decrease across all instances and the samples will vary from min to max values of the set. If you want to visualize the average 2D partial dependence across the entire test-set instead..

all_inst = my_pdp_plot.pdp_2D("alcohol", "density")
my_pdp_plot.plot_heatmap(all_inst)

alternate text

1.7 Clustering 2D partial dependence

With same function my_pdp_plot.compute_clusters() of Section 1.4, it is also possible to cluster heatmaps.

An heatmap object from the command my_pdp_plot.pdp_2D(feat_y, feat_x, instances) contains: num_samples X num_samples X len(instances) prediction values.

It is possible to cluster all the test instances (using the RMSE metric) and to display an heatmaps for each cluster with the following code:

all_inst = my_pdp_plot.pdp_2D("alcohol", "density")
list_clust_heats = my_pdp_plot.compute_clusters(all_inst, n_clusters = 16)
my_pdp_plot.plot_heatmap(list_clust_heats)

alternate text

1.8 2D partial dependence SPLOMs

We can combine all the possible heatmaps in a single visualization. The SPLOM will show the patterns describing all possible pairs of features partial dependence.

The code to visualize the SPLOM for that same instance 88 is quite simple:

sploms_objs = my_pdp_plot.get_data_splom(88)
my_pdp_plot.plot_splom(sploms_objs)

A stripe of blue/red over a column and row of a feature determines an increase/decrease of prediction when that feature is changed, no matter what other feature varies. For example for this particular instance, when changing just two features, an increase in alcohol or decrease in volatile acidity would generally bring an increase in prediction towards the class good wine.

alternate text

The SPLOM can give you a hint of average prediction change also over the entire test-set. The visualization combines the 2D scatter plots with the average change in prediction.

The user can detect global patterns when a same color disposition is present across row and columns of a same feature. For example this model generally has an average increase in prediction towards the class good wine when the alcohol increases with any other feature. Dark orange areas and blue areas show where there is an average decrease/increase in prediction. For example there is an enclaved blue area within the heatmap cell for pH and total sulfur dioxide where the prediction generally increases.

sploms_objs = my_pdp_plot.get_data_splom()
my_pdp_plot.plot_splom(sploms_objs)

alternate text

1.9 Clustering SPLOMs

Each instance SPLOM can be represented by a long vector of prediction values. The vector is created by appending the data from each unique heatmap in a SPLOM. We can measure the distance among different instances SPLOMs by computing RMSE among such vectors. By building an RMSE distance matrix and clustering the instances we are able to represent a SPLOM for each cluster set. With the following code we can cluster the SPLOMs of the entire test-set.

sploms_objs = my_pdp_plot.get_data_splom()
list_clust_sploms = my_pdp_plot.compute_clusters(sploms_objs, n_clusters = 16)

To have an overview over the entire set of clusters:

my_pdp_plot.plot_splom(list_clust_sploms)

alternate text

We can now plot the first cluster (cluster with label "#8" in the left top corner of the last viz)

my_pdp_plot.plot_splom(list_clust_sploms[0])

alternate text

The distance matrix is stored, so it is less time consuming to change the number of clusters and plot again.

list_clust_sploms = my_pdp_plot.compute_clusters(sploms_objs, n_clusters = 49)
my_pdp_plot.plot_splom(list_clust_sploms)

alternate text

2. Customization and extra functions

2.1 Computing predictions in chunks

When using pdp(), sometimes the amount of data to process is too large and it is necessary to divide it in chunks so that we don't run out of memory. To do so, just set the optional argument batch_size to the desired integer number.

batch_size cannot be lower than num_samples or higher than num_samples * len(df_test). If batch_size is 0, then the computation of prediction will take place in a single chunk, which is much faster if you have enough memory.

curves = my_pdp_plot.pdp( chosen_feature, batch_size = 1000 )

2.2 Using your own matplotlib figure

If you really like to hand yourself matplotlib and be free to customize the visualization this is how it works:

curves_list_RF = my_pdp_plot.compute_clusters(curves, chosen_cluster_number)

cluster_7 = curves_list_RF[7]
cluster_0 = curves_list_RF[0]
cluster_9 = curves_list_RF[9]

fig, ax = plt.subplots(figsize=(16, 9), dpi=100)

my_pdp_plot.plot(cluster_7,
                   color_plot="red",
                   plot_object=ax)

my_pdp_plot.plot(cluster_0,
                   color_plot="blue",
                   plot_object=ax)

my_pdp_plot.plot(cluster_9,
                   color_plot="green",
                   plot_object=ax)

plt.show()
plt.close("all")

alternate text

2.3 Comparing different models

There might be scenarios in which you want to compare clusters from different models. For example let's compare the Random Forest model we had so far with a Support Vector Machine model.

wine_pdp_plot_SVM = pdp_plot.PartialDependence(df_test,
                                                model_SVM,
                                                labels_name,
                                                labels_focus,
                                                num_samples,
                                                scale_SVM,
                                                shift_SVM)

curves = wine_pdp_plot_SVM.pdp(chosen_feature)
curves_list_SVM = wine_pdp_plot_SVM.compute_clusters(curves, chosen_cluster_number)
wine_pdp_plot_SVM.plot(curves_list_SVM)

alternate text

2.4 Clustering with DTW distance

To cluster together the partial dependence plots, we measure the distance among each pair. By default this distance is measured with RMSE. Another option for 1D partial dependence clustering is LB Keogh distance, an approximation of Dynamic Time Warping (DTW) distance. By setting the curves.r_param parameter of the formula to a value different from None, you are able to compute the clustering with the LB Keogh. The method get_optimal_keogh_radius() gives you a quick way to automatically compute an optimal value for curves.r_param. To set the distance back to RMSE just set curves.set_keogh_radius(None) before recomputing the clustering.

The first time you compute the clustering, a distance matrix is computed. Especially when using DTW distance, this might get time consuming. After the first time you call compute_clusters() on the curves object, the distance matrix will be stored in memory and the computation will be then much faster. Anyway if you change the radius with curves.set_keogh_radius(), you will need to recompute again the distance matrix.

curves.set_keogh_radius( my_pdp_plot.get_optimal_keogh_radius() )
keogh_curves_list = my_pdp_plot.compute_clusters( curves, chosen_cluster_number )

2.5 An example of the visualization customizations

my_pdp_plot.plot( keogh_curves_list, local_curves = False, plot_full_curves = True )

alternate text

curves_list_RF = my_pdp_plot.compute_clusters( curves_RF, 5 )

my_pdp_plot.plot( curves_list_RF, cell_view = True )

alternate text

curves_list_SVM = my_pdp_plot_SVM.compute_clusters( curves_SVM, 25 )

my_pdp_plot_SVM.plot( curves_list_SVM,
                        cell_view = True,
                        plot_full_curves = True,
                        local_curves = False,
                        path="plot_alcohol.png" )

alternate text

2.6 Highlighting a custom vector

In case you want to highlight the partial dependence of a particular vector custom_vect, this is how it works..

curves, custom_preds = my_pdp_plot.pdp( chosen_feature, chosen_row = custom_vect )

my_pdp_plot.compute_clusters( curves, chosen_cluster_number )

my_pdp_plot.plot( curves, local_curves = False,
                   chosen_row_preds_to_plot = custom_preds )

alternate text

Owner
NYU Visualization Lab
repository for our group code and apps
NYU Visualization Lab
Altair extension for saving charts in a variety of formats.

Altair Saver This packge provides extensions to Altair for saving charts to a variety of output types. Supported output formats are: .json/.vl.json: V

Altair 85 Dec 09, 2022
Focus on Algorithm Design, Not on Data Wrangling

The dataTap Python library is the primary interface for using dataTap's rich data management tools. Create datasets, stream annotations, and analyze model performance all with one library.

Zensors 37 Nov 25, 2022
GUI for visualization and interactive editing of SMPL-family body models ie. SMPL, SMPL-X, MANO, FLAME.

Body Model Visualizer Introduction This is a simple Open3D-based GUI for SMPL-family body models. This GUI lets you play with the shape, expression, a

Muhammed Kocabas 207 Jan 01, 2023
Info for The Great DataTas plot-a-thon

The Great DataTas plot-a-thon Datatas is organising a Data Visualisation competition: The Great DataTas plot-a-thon We will be using Tidy Tuesday data

2 Nov 21, 2021
VDLdraw - Batch plot the log files exported from VisualDL using Matplotlib

VDLdraw Batch plot the log files exported from VisualDL using Matplotlib. At pre

Yizhou Chen 5 Sep 26, 2022
A comprehensive tutorial for plotting focal mechanism

Focal_Mechanisms_Demo A comprehensive tutorial for plotting focal mechanism "beach-balls" using the PyGMT package for Python. (Resulting map of this d

3 Dec 13, 2022
Matplotlib tutorial for beginner

matplotlib is probably the single most used Python package for 2D-graphics. It provides both a very quick way to visualize data from Python and publication-quality figures in many formats. We are goi

Nicolas P. Rougier 2.6k Dec 28, 2022
By default, networkx has problems with drawing self-loops in graphs.

By default, networkx has problems with drawing self-loops in graphs. It makes it hard to draw a graph with self-loops or to make a nicely looking chord diagram. This repository provides some code to

Vladimir Shitov 5 Jan 06, 2022
A curated list of awesome Dash (plotly) resources

Awesome Dash A curated list of awesome Dash (plotly) resources Dash is a productive Python framework for building web applications. Written on top of

Luke Singham 1.7k Dec 26, 2022
Python toolkit for defining+simulating+visualizing+analyzing attractors, dynamical systems, iterated function systems, roulette curves, and more

Attractors A small module that provides functions and classes for very efficient simulation and rendering of iterated function systems; dynamical syst

1 Aug 04, 2021
Generate graphs with NetworkX, natively visualize with D3.js and pywebview

webview_d3 This is some PoC code to render graphs created with NetworkX natively using D3.js and pywebview. The main benifit of this approac

byt3bl33d3r 68 Aug 18, 2022
A python wrapper for creating and viewing effects for Matt Parker's christmas tree.

Christmas Tree Visualizer A python wrapper for creating and viewing effects for Matt Parker's christmas tree. Displays py or csv effect files and allo

4 Nov 22, 2022
Custom ROI in Computer Vision Applications

EasyROI Helper library for drawing ROI in Computer Vision Applications Table of Contents EasyROI Table of Contents About The Project Tech Stack File S

43 Dec 09, 2022
Streaming pivot visualization via WebAssembly

Perspective is an interactive visualization component for large, real-time datasets. Originally developed for J.P. Morgan's trading business, Perspect

The Fintech Open Source Foundation (www.finos.org) 5.1k Dec 27, 2022
NumPy and Pandas interface to Big Data

Blaze translates a subset of modified NumPy and Pandas-like syntax to databases and other computing systems. Blaze allows Python users a familiar inte

Blaze 3.1k Jan 01, 2023
Simulation du problème de Monty Hall avec Python et matplotlib

Le problème de Monty Hall C'est un jeu télévisé où il y a trois portes sur le plateau de jeu. Seule une de ces portes cache un trésor. Il n'y a rien d

ETCHART YANG 1 Jan 06, 2022
Automatization of BoxPlot graph usin Python MatPlotLib and Excel

BoxPlotGraphAutomation Automatization of BoxPlot graph usin Python / Excel. This file is an automation of BoxPlot-Graph using python graph library mat

EricAugustin 1 Feb 07, 2022
This plugin plots the time you spent on a tag as a histogram.

This plugin plots the time you spent on a tag as a histogram.

Tom Dörr 7 Sep 09, 2022
Statistics and Visualization of acceptance rate, main keyword of CVPR 2021 accepted papers for the main Computer Vision conference (CVPR)

Statistics and Visualization of acceptance rate, main keyword of CVPR 2021 accepted papers for the main Computer Vision conference (CVPR)

Hoseong Lee 78 Aug 23, 2022
3D Vision functions with end-to-end support for deep learning developers, written in Ivy.

Ivy vision focuses predominantly on 3D vision, with functions for camera geometry, image projections, co-ordinate frame transformations, forward warping, inverse warping, optical flow, depth triangul

Ivy 61 Dec 29, 2022