Release for Improved Denoising Diffusion Probabilistic Models

Overview

improved-diffusion

This is the codebase for Improved Denoising Diffusion Probabilistic Models.

Usage

This section of the README walks through how to train and sample from a model.

Installation

Clone this repository and navigate to it in your terminal. Then run:

pip install -e .

This should install the improved_diffusion python package that the scripts depend on.

Preparing Data

The training code reads images from a directory of image files. In the datasets folder, we have provided instructions/scripts for preparing these directories for ImageNet, LSUN bedrooms, and CIFAR-10.

For creating your own dataset, simply dump all of your images into a directory with ".jpg", ".jpeg", or ".png" extensions. If you wish to train a class-conditional model, name the files like "mylabel1_XXX.jpg", "mylabel2_YYY.jpg", etc., so that the data loader knows that "mylabel1" and "mylabel2" are the labels. Subdirectories will automatically be enumerated as well, so the images can be organized into a recursive structure (although the directory names will be ignored, and the underscore prefixes are used as names).

The images will automatically be scaled and center-cropped by the data-loading pipeline. Simply pass --data_dir path/to/images to the training script, and it will take care of the rest.

Training

To train your model, you should first decide some hyperparameters. We will split up our hyperparameters into three groups: model architecture, diffusion process, and training flags. Here are some reasonable defaults for a baseline:

MODEL_FLAGS="--image_size 64 --num_channels 128 --num_res_blocks 3"
DIFFUSION_FLAGS="--diffusion_steps 4000 --noise_schedule linear"
TRAIN_FLAGS="--lr 1e-4 --batch_size 128"

Here are some changes we experiment with, and how to set them in the flags:

  • Learned sigmas: add --learn_sigma True to MODEL_FLAGS
  • Cosine schedule: change --noise_schedule linear to --noise_schedule cosine
  • Reweighted VLB: add --use_kl True to DIFFUSION_FLAGS and add --schedule_sampler loss-second-moment to TRAIN_FLAGS.
  • Class-conditional: add --class_cond True to MODEL_FLAGS.

Once you have setup your hyper-parameters, you can run an experiment like so:

python scripts/image_train.py --data_dir path/to/images $MODEL_FLAGS $DIFFUSION_FLAGS $TRAIN_FLAGS

You may also want to train in a distributed manner. In this case, run the same command with mpiexec:

mpiexec -n $NUM_GPUS python scripts/image_train.py --data_dir path/to/images $MODEL_FLAGS $DIFFUSION_FLAGS $TRAIN_FLAGS

When training in a distributed manner, you must manually divide the --batch_size argument by the number of ranks. In lieu of distributed training, you may use --microbatch 16 (or --microbatch 1 in extreme memory-limited cases) to reduce memory usage.

The logs and saved models will be written to a logging directory determined by the OPENAI_LOGDIR environment variable. If it is not set, then a temporary directory will be created in /tmp.

Sampling

The above training script saves checkpoints to .pt files in the logging directory. These checkpoints will have names like ema_0.9999_200000.pt and model200000.pt. You will likely want to sample from the EMA models, since those produce much better samples.

Once you have a path to your model, you can generate a large batch of samples like so:

python scripts/image_sample.py --model_path /path/to/model.pt $MODEL_FLAGS $DIFFUSION_FLAGS

Again, this will save results to a logging directory. Samples are saved as a large npz file, where arr_0 in the file is a large batch of samples.

Just like for training, you can run image_sample.py through MPI to use multiple GPUs and machines.

You can change the number of sampling steps using the --timestep_respacing argument. For example, --timestep_respacing 250 uses 250 steps to sample. Passing --timestep_respacing ddim250 is similar, but uses the uniform stride from the DDIM paper rather than our stride.

To sample using DDIM, pass --use_ddim True.

Owner
OpenAI
OpenAI
A Lego Mindstorm robot for dealing out cards based on a birds-eye view of a poker table and given ArUco fiducial tags.

A Lego Mindstorm robot for dealing out cards based on a birds-eye view of a poker table and given ArUco fiducial tags.

4 Dec 06, 2021
Enjoy Discords Unlimited Storage

Discord Storage V.3.5 (Beta) Made by BoKa Enjoy Discords free and unlimited storage... Prepare: Clone this from Github, make sure there either a folde

0 Dec 16, 2021
Chalice - A tool to facilitate Python based lambda deployment

Chalice is a tool to facilitate Python based lambda deployment. This repo contains the output of my basic exploration of this tool.

Csilla Bessenyei 1 Feb 03, 2022
Show my read on kindle this year

Show my kindle status on GitHub

yihong 26 Jun 20, 2022
Web站点选优工具 - 优化GitHub的打开速度、高效Clone

QWebSiteOptimizer - Web站点速度选优工具 在访问GitHub等网站时,DNS解析到的IP地址可能并不是最快,过慢的节点会严重影响我们的访问情况,故制作出这样的工具来进一步优化网络质量。 由于该方案并非为VPN等方式进行的速度优化,以下几点需要您注意: 后续访问对应网站时仍可能需

QPT Family 15 May 01, 2022
This is the Code Institute student template for Gitpod.

Welcome AnaG0307, This is the Code Institute student template for Gitpod. We have preinstalled all of the tools you need to get started. It's perfectl

0 Feb 02, 2022
Nateve transpiler developed with python.

Adam Adam is a Nateve Programming Language transpiler developed using Python. Nateve Nateve is a new general domain programming language open source i

Nateve 7 Jan 15, 2022
Age of Empires II recorded game parsing and summarization in Python 3.

mgz Age of Empires II recorded game parsing and summarization in Python 3. Supported Versions Age of Kings (.mgl) The Conquerors (.mgx) Userpatch 1.4

148 Dec 11, 2022
Мой первый калькулятор!!!!!!

my_first_calculator Первый калькулятор созданный мною на питоне Версия калькулятора: 0.0.4 Как скачать? TERMUX Для скрипта нужен питон, скачиваем pkg

Lesha Russkiyov 2 Dec 29, 2021
A brainfuck-based game oriented language written in python.

GF.py STILL WIP Gamefuck.py is a programming language based off brainfuck. It is oriented towards game development, and as such has many commands spec

Xenon 1 Feb 23, 2022
📜Generate poetry with gcc diagnostics

gado (gcc awesome diagnostics orchestrator) is a wrapper of gcc that outputs its errors and warnings in a more poetic format.

Dikson Santos 19 Jun 25, 2022
CBO uses its Capital Tax model (CBO-CapTax) to estimate the effects of federal taxes on capital income from new investment

CBO’s CapTax Model CBO uses its Capital Tax model (CBO-CapTax) to estimate the effects of federal taxes on capital income from new investment. Specifi

Congressional Budget Office 7 Dec 16, 2022
Bring A Trailer(BAT) is a popular online auction website for enthusiast cars. This traverse auction results and saves them as CSV

BaT Data Grabber Bring A Trailer(BAT) is a popular online auction website for enthusiast cars. This traverse auction results and saves them as CSV Bri

Elliot Weil 2 Oct 31, 2021
🌈Python cheatsheet for all standard libraries(Continuously Updated)

Python Standard Libraries Cheatsheet Depend on Python v3.9.8 All code snippets have been tested to ensure they work properly. Fork me on GitHub. 中文 En

nick 12 Dec 27, 2022
An osu! cheat made in c++ rewritten in python and currently undetected.

megumi-python An osu! cheat made in c++ rewritten in python and currently undetected. Installation Guide Download python 3.9 from https://python.org C

Elaina 2 Nov 18, 2022
Modeval (or Modular Eval) is a modular and secure string evaluation library that can be used to create custom parsers or interpreters.

modeval Modeval (or Modular Eval) is a modular and secure string evaluation library that can be used to create custom parsers or interpreters. Basic U

2 Jan 01, 2022
A set of scripts for a two-step procedure to measure the value of access to destinations across several modes of travel within a geographic area.

A set of scripts for a two-step procedure to measure the value of access to destinations across several modes of travel within a geographic area.

Institute for Transportation and Development Policy 2 Oct 16, 2022
Write complicated anonymous functions other than lambdas in Python.

lambdex allows you to write multi-line anonymous function expression (called a lambdex) in an idiomatic manner.

Xie Jingyi 71 May 19, 2022
Project5 Data processing system

Project5-Data-processing-system User just needed to copy both these file to a folder and open Project5.py using cmd or using any python ide. It is to

1 Nov 23, 2021