Create a low powered, renewable generation forecast display with a Raspberry Pi Zero & Inky wHAT.

Overview

GB Renewable Forecast Display

Screenshot Screenshot Screenshot Screenshot

This Raspberry Pi powered eInk display aims to give you a quick way to time your home energy usage to help balance the grid, reduce carbon emissions, and if you're an agile tariff user, save money.

The project takes the same approach as shouldibake.com and the Baking Forecast GB to give you quick visual aid when making that decision, showing you when renewable generation is above or below 33%.

Data is provided by the National Grid's carbon intensity api and Octopus Energy's Agile tariff pricing API.

Install and setup

Following the steps in this repository requires minimal input - all the required Inky libraries & code to display the screens is downloaded and setup on your pi when you run the install commands. You will need an SSH client in order to connect to the pi, but all of the SSH commands you need are listed on this page.

  • time required: ~30mins
  • cost of the components: ~£70

Components

  1. Raspberry Pi Zero soldered (~£14) (piehut | pimoroni)
  2. Micro SD card (~£7) (piehut | pimoroni)
  3. Inky wHAT (ePaper/eInk/EPD) - Black/White (£45) (piehut | pimoroni)
  4. Power supply - micro USB connection (piehut | pimoroni - or use an existing cable)
  5. Case (see notes below)

Raspberry Pi Setup

I use a "headless" Raspberry Pi setup to install all the dependencies; we configure the wifi settings prior to powering on the Pi & enable SSH by default, this mean we avoid having to connect a display or a keyboard.

1. Flash SD card with Raspberry Pi OS lite (no desktop)

  • Use Raspberry Pi Imager
  • Select SD card
  • Choose "Raspberry Pi OS (other)" > "Raspberry Pi OS Lite (32-bit)" (we dont require a GUI desktop)
  • Select write & wait for the OS to be written to the SD card.

2. Configure Wifi & Enable SSH

  • Once the Rapsberry Pi OS image has been saved to the SD card, open a file window so that you can view the contents of the SD card's 'boot' folder
  • Create a new file wpa_supplicant.conf in the root of the boot folder & add the following, replacing the relevant sections with the SSID and password of your wifi network
  ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev
  network={
    ssid="YOUR_SSID"
    psk="YOUR_WIFI_PASSWORD"
    key_mgmt=WPA-PSK
  }

Example file: conf/wpa_supplicant.conf

  • Finally create an empty file called 'ssh' (without a file extension) in the boot directory, this will enable SSH by default when you first power on the pi

3. Insert the SD into the Pi, install the Pi into the Inky display & boot

  • Insert the SD card into the Raspberry Pi
  • Install the Raspberry Pi into the back of the Inky display - align the Pi, with the 40 GPIO pins pointing down, to the top right hand corner of the back of the Inky display and gently push the the GPIO pins into the black connector. See an image of the reverse of display.
  • Power on the Pi & wait for ~2 minutes whilst the operating system boots up.
  • At this point you'll need to create an SSH connection to the Pi from your laptop/desktop. You can read more about SSH (Secure Shell) & find a client for your machine here
  • If this is the only Raspberry Pi on your network you'll be able to access the Pi using the device's hostname with following SSH command
ssh [email protected]
# password is 'raspberry'

otherwise, you will need to find the IP of your Pi via your local network router then start a SSH session using

ssh pi@[IP ADDRESS]
# password is 'raspberry'
  • Once your ssh connetion has been established the first thing you should do is update the password - the Pi OS ships with a default password, and it's always best to change this before going any further. To change your password run:
passwd

Then enter and confirm your new password

4. Run the install script

  • In your SSH terminal, ensure you're first in the pi user's home directory by running cd ~/
  • Install the dependencies for both the Inky display & the api/drawing libraries by running the following command

curl https://raw.githubusercontent.com/openbook/shouldi-eink-display/main/setup/install.sh | bash Note this command runs the install file found within this repository, so you can check exactly what's being installed if you need to.

  • When prompted enter Y to install the required inky libraries
  • When prompted 'Do you wish to perform a full install?' enter N
  • Once the install script has finished, the Pi will be rebooted to ensure all the libraries are correctly loaded now that the inky display is connected.
  • Once the pi has rebooted, if everything has been installed correctly, the Inky screen should update to display the default 'combined' screen.

5. SSH back in to the Pi & set the display configuration

  • First SSH back into the pi
  • By default the 'combined' forecast and current generation mix is displayed. Full info on each of the screens is available here. You can update the display by changing the values found within the 'config.ini' that was downloaded as part of the setup:
  • Using a text editor update the contents of the file found at /home/pi/shouldi-eink-display/config.ini
  • Update the display = combined line choosing one of the following options:
    • combined - renewable forecast plus current generation mix
    • forecast - the full "should i bake" forecast
    • agile - agile tariff hourly prices for the current day
    • generation - current renable generation mix for a local area
  • If selecting "agile" then the postcode and placename should be changed from the current values in the same file. Note postcodes should be added using the first half only (e.g. for SW1A 0AA use SW1A)
  • see '#displays' for notes on each display screen

6. Setup the web interface

Screenshot

You can also setup and run a simple web form which will allow you to switch the current screen display using a browser.

  • still using the SSH session, make sure you are in the project root folder cd ~/shouldi-eink-display
  • run ./setup/install-web.sh this will setup an nginx webserver and serve a simple flask based webapp that will allow you to update the config.ini file.
  • Once the install script has finished, it should confirm the IP address of your Pi - you can then open that IP address in a browser to access the web interface shown above

7. 🎉 Done

Hopefully everything should be setup and working ok.

Your display is set to update automatically at 5 & 35 minutes past each hour.

Screens

Screen Config.ini name Description
Screenshot combined Combined current generation mix + renewable forecast

Now
how much of the current electricity supply, coming from the National Grid, is being generated from renewable sources (wind, hydro & solar)

Forecast
for the next (up to) 4 days, which slots (morning, afternoon, evening or night) are forecasted to have renewable generation higher than 33%
- where there's a tick, generation is forecasted to be greater than 33%
- where there's a cross, generation is forecasted to be lower than 33%, avoid doing any activities at home which consume a lot of electricity during these times if you can
- where the tick or cross is underlined - this shows the period during the day which is forecasted to have the highest renewable generation. Try to plan your high demand activities for these time.
Screenshot agile (Octopus) Agile Tariff pricing

Displays the cost p/kWh (pence per kilowatt hour) for each hour over the current day.
See the full documentation here for more information

Note: the data retrieved from the Octopus API is for the London 'C' region by default. To change region, first find the alphabetical region (GSP Group) Id then update the region value in the config.ini file (excluding any underscores)
Screenshot forecast Baking forecast shouldibake.com @baking4cast

Right now, Bake!/Can baking wait?
tells you whether the current renewable generation level is higher than 33%

Forecast
for the next (up to) 4 days, which slots (morning, afternoon, evening or night) are forecasted to have renewable generation higher than 33%
- where there's a tick, generation is forecasted to be greater than 33%
- where there's a cross, generation is forecasted to be lower than 33%, avoid doing any activities at home which consume a lot of electricity during these times if you can
- where the tick or cross is underlined - this shows the period during the day which is forecasted to have the highest renewable generation. Try to plan your high demand activities for these time.
Screenshot generation Local generation for your region

Using a postcode supplied in the config.ini file, this display shows the current generation mix specific to your region.

Case

Make your own

Screenshot Screenshot

I created a simple frame using some pine stripwood (6x25mm), which was then treated with danish oil. This works well and with a small cut out for the USB power cable sits flush against a wall when fixed with a nail.

Modeled and 3d printed LargeCover enclosure by Printminion

This is a great professional looking case that's ready to buy and simple to install.

Note, unless you are going to solder the pi to the inky manually then you'll need the 'enclosure' + 'large cover'.

To do

  • Add a physical button to switch between displays
  • Add error handling for all outgoing requests
  • Image uploader for custom screen of when generation is high and low
  • Move carbonintensitylib to pandas for consistency and to improve code qualityŒ
  • Add more in depth view for agile pricing - show current, min and max prices
  • Add a battery pack & power management
Owner
Andy Brace
Andy Brace
Intel Realsense t265 into Unreal Engine

t265_UE Intel Realsense t265 into Unreal Engine. Windows only, and Livelink plugin is 4.26.2 only at the moment. Might recompile it for different vers

Bjarke Aagaard 30 Jan 02, 2023
Volkswagen ID component for Home Assistant

Volkswagen ID component for Home Assistant This folder contains both a generic Python 3 library for the Volkswagen ID API and a component for Home Ass

55 Jan 07, 2023
A circle of LEDs

This repository contains all the design files, production files and example code for a simple circular LED display.

Pim de Groot 15 Aug 21, 2022
Projet d'integration SRI 3A ROS

projet-integration-sri-2021-2022 Projet d'intégration ROS SRI 2021 2022 Organization: Planification de tâches Perception Saisie: Cédérick Mouliets Sim

AIP Primeca Occitanie 3 Jan 07, 2022
Python script: Enphase Envoy mqtt json for Home Assistant

A Python script that takes a real time stream from Enphase Envoy and publishes to a mqtt broker. This can then be used within Home Assistant or for other applications. The data updates at least once

29 Dec 27, 2022
Technical Answers to Real-World Problems. Evolution of Watering Manually to Watering Automatically.

Automatic Watering System using Soil Moisture Sensor and RTC Timer with Arduino Technical Answers to Real-World Problems Know the plant, Grow the plan

NelakurthiSudheer 3 Jan 03, 2022
Extremely simple PyBadge examples to demonstrate different aspects of CircuitPython using PyBadge hardware.

BeginnerPyBadge I purchased a PyBadge recently. I'm new to hardware. I was surprised how hard it was to find easy examples demonstrating how different

Rubini LaForest 2 Oct 21, 2021
A ESP32 project template with a web interface built in React

ESP AP Webserver demo.mp4 This is my experiment with "mobile app development" for the ESP32. The project consists of two parts, the ESP32 code and the

8 Dec 15, 2022
Mini Pupper - Open-Source,ROS Robot Dog Kit

Mini Pupper - Open-Source,ROS Robot Dog Kit

MangDang 747 Dec 28, 2022
Home Assistant custom components MPK-Lodz

MPK Łódź sensor This sensor uses unofficial API provided by MPK Łódź. Configuration options Key Type Required Default Description name string False MP

Piotr Machowski 3 Nov 01, 2022
Python module for controlling Broadlink RM2/3 (Pro) remote controls, A1 sensor platforms and SP2/3 smartplugs

Python module for controlling Broadlink RM2/3 (Pro) remote controls, A1 sensor platforms and SP2/3 smartplugs

Matthew Garrett 1.2k Jan 04, 2023
Implemented robot inverse kinematics.

robot_inverse_kinematics Project setup # put the package in the workspace $ cd ~/catkin_ws/ $ catkin_make $ source devel/setup.bash Description In thi

Jianming Han 2 Dec 08, 2022
Monorepo for my Raspberry Pi dashboard and GPS satellite listener.

🥧 pi dashboard My blog post: Listening to Satellites with my Raspberry Pi This is the monorepo for my Raspberry Pi dashboard!

Andrew Healey 27 Jun 08, 2022
Segger Embedded Studio project for building & debugging Flipper Zero firmware.

Segger Embedded Studio project for Flipper Zero firmware Установка Добавить данный репозиторий в качестве сабмодуля в корень локальной копии репозитор

25 Dec 28, 2022
HA-Edge-Connector - HA Edge Connector For Python

HA-Edge-Connector 1. Required a. Smartthings Hub & Homeassistant must be in same

chals 21 Dec 29, 2022
智能无人机路径规划仿真系统是一个具有操作控制精细、平台整合性强、全方向模型建立与应用自动化特点的软件

Drone智能无人机路径规划仿真系统是一个具有操作控制精细、平台整合性强、全方向模型建立与应用自动化特点的软件。它以A、B两国在C区开展无人机战争为背景,该系统的核心功能是通过仿真平台规划无人机航线,并进行验证输出,数据可导入真实无人机,使其按照规定路线精准抵达战场任一位置,支持多人多设备编队联合行动。

wwy 349 Jan 03, 2023
LifeSaver automatically, periodically saves USB flash drive data into the PC

LifeSaver automatically, periodically saves USB flash drive data into the PC. Theoriticaly it will work with any any connected drive ex - Hard Disk ,SSD ... But, can't handle Backing up multipatition

siddharth dhaka 4 Sep 26, 2021
DOS-like OS for RP2040 basic microcontroller boards

Micropython DOS-like OS for RP2040 microcontroller boards. Check out the demo video at https://www.youtube.com/watch?v=Az_oiq8GE4Y To start the OS typ

RetiredWizard 58 Dec 27, 2022
BoneIO is a compact IO controller for home automation.

Project description BoneIO is a compact IO controller for home automation. Main features of this controller are Compact size (27x11x6)cm - 15 DIN modu

Maciej Krasuski 120 Nov 30, 2022
Python application, displaying currently played track from Spotify on OLED display connected via I2C

RaspberryPi Spotify OLED Display This application will display currently played track on SSD1306 OLED display connected to RaspberryPi. Displayed stuf

Wojciech Olech 2 Dec 30, 2021