OpenTracing API for Python

Overview

OpenTracing API for Python

GitterChat BuildStatus PyPI Documentation Status

This library is a Python platform API for OpenTracing.

Required Reading

In order to understand the Python platform API, one must first be familiar with the OpenTracing project and terminology more specifically.

Status

In the current version, opentracing-python provides only the API and a basic no-op implementation that can be used by instrumentation libraries to collect and propagate distributed tracing context.

Future versions will include a reference implementation utilizing an abstract Recorder interface, as well as a Zipkin-compatible Tracer.

Usage

The work of instrumentation libraries generally consists of three steps:

  1. When a service receives a new request (over HTTP or some other protocol), it uses OpenTracing's inject/extract API to continue an active trace, creating a Span object in the process. If the request does not contain an active trace, the service starts a new trace and a new root Span.
  2. The service needs to store the current Span in some request-local storage, (called Span activation) where it can be retrieved from when a child Span must be created, e.g. in case of the service making an RPC to another service.
  3. When making outbound calls to another service, the current Span must be retrieved from request-local storage, a child span must be created (e.g., by using the start_child_span() helper), and that child span must be embedded into the outbound request (e.g., using HTTP headers) via OpenTracing's inject/extract API.

Below are the code examples for the previously mentioned steps. Implementation of request-local storage needed for step 2 is specific to the service and/or frameworks / instrumentation libraries it is using, exposed as a ScopeManager child contained as Tracer.scope_manager. See details below.

Inbound request

Somewhere in your server's request handler code:

def handle_request(request):
    span = before_request(request, opentracing.global_tracer())
    # store span in some request-local storage using Tracer.scope_manager,
    # using the returned `Scope` as Context Manager to ensure
    # `Span` will be cleared and (in this case) `Span.finish()` be called.
    with tracer.scope_manager.activate(span, True) as scope:
        # actual business logic
        handle_request_for_real(request)


def before_request(request, tracer):
    span_context = tracer.extract(
        format=Format.HTTP_HEADERS,
        carrier=request.headers,
    )
    span = tracer.start_span(
        operation_name=request.operation,
        child_of=span_context)
    span.set_tag('http.url', request.full_url)

    remote_ip = request.remote_ip
    if remote_ip:
        span.set_tag(tags.PEER_HOST_IPV4, remote_ip)

    caller_name = request.caller_name
    if caller_name:
        span.set_tag(tags.PEER_SERVICE, caller_name)

    remote_port = request.remote_port
    if remote_port:
        span.set_tag(tags.PEER_PORT, remote_port)

    return span

Outbound request

Somewhere in your service that's about to make an outgoing call:

from opentracing import tags
from opentracing.propagation import Format
from opentracing_instrumentation import request_context

# create and serialize a child span and use it as context manager
with before_http_request(
    request=out_request,
    current_span_extractor=request_context.get_current_span):

    # actual call
    return urllib2.urlopen(request)


def before_http_request(request, current_span_extractor):
    op = request.operation
    parent_span = current_span_extractor()
    outbound_span = opentracing.global_tracer().start_span(
        operation_name=op,
        child_of=parent_span
    )

    outbound_span.set_tag('http.url', request.full_url)
    service_name = request.service_name
    host, port = request.host_port
    if service_name:
        outbound_span.set_tag(tags.PEER_SERVICE, service_name)
    if host:
        outbound_span.set_tag(tags.PEER_HOST_IPV4, host)
    if port:
        outbound_span.set_tag(tags.PEER_PORT, port)

    http_header_carrier = {}
    opentracing.global_tracer().inject(
        span_context=outbound_span.context,
        format=Format.HTTP_HEADERS,
        carrier=http_header_carrier)

    for key, value in http_header_carrier.iteritems():
        request.add_header(key, value)

    return outbound_span

Scope and within-process propagation

For getting/setting the current active Span in the used request-local storage, OpenTracing requires that every Tracer contains a ScopeManager that grants access to the active Span through a Scope. Any Span may be transferred to another task or thread, but not Scope.

# Access to the active span is straightforward.
scope = tracer.scope_manager.active
if scope is not None:
    scope.span.set_tag('...', '...')

The common case starts a Scope that's automatically registered for intra-process propagation via ScopeManager.

Note that start_active_span('...') automatically finishes the span on Scope.close() (start_active_span('...', finish_on_close=False) does not finish it, in contrast).

# Manual activation of the Span.
span = tracer.start_span(operation_name='someWork')
with tracer.scope_manager.activate(span, True) as scope:
    # Do things.

# Automatic activation of the Span.
# finish_on_close is a required parameter.
with tracer.start_active_span('someWork', finish_on_close=True) as scope:
    # Do things.

# Handling done through a try construct:
span = tracer.start_span(operation_name='someWork')
scope = tracer.scope_manager.activate(span, True)
try:
    # Do things.
except Exception as e:
    span.set_tag('error', '...')
finally:
    scope.close()

If there is a Scope, it will act as the parent to any newly started Span unless the programmer passes ignore_active_span=True at start_span()/start_active_span() time or specified parent context explicitly:

scope = tracer.start_active_span('someWork', ignore_active_span=True)

Each service/framework ought to provide a specific ScopeManager implementation that relies on their own request-local storage (thread-local storage, or coroutine-based storage for asynchronous frameworks, for example).

Scope managers

This project includes a set of ScopeManager implementations under the opentracing.scope_managers submodule, which can be imported on demand:

from opentracing.scope_managers import ThreadLocalScopeManager

There exist implementations for thread-local (the default instance of the submodule opentracing.scope_managers), gevent, Tornado, asyncio and contextvars:

from opentracing.scope_managers.gevent import GeventScopeManager # requires gevent
from opentracing.scope_managers.tornado import TornadoScopeManager # requires tornado<6
from opentracing.scope_managers.asyncio import AsyncioScopeManager # fits for old asyncio applications, requires Python 3.4 or newer.
from opentracing.scope_managers.contextvars import ContextVarsScopeManager # for asyncio applications, requires Python 3.7 or newer.

Note that for asyncio applications it's preferable to use ContextVarsScopeManager instead of AsyncioScopeManager because of automatic parent span propagation to children coroutines, tasks or scheduled callbacks.

Development

Tests

virtualenv env
. ./env/bin/activate
make bootstrap
make test

You can use tox to run tests as well.

tox

Testbed suite

A testbed suite designed to test API changes and experimental features is included under the testbed directory. For more information, see the Testbed README.

Instrumentation Tests

This project has a working design of interfaces for the OpenTracing API. There is a MockTracer to facilitate unit-testing of OpenTracing Python instrumentation.

from opentracing.mocktracer import MockTracer

tracer = MockTracer()
with tracer.start_span('someWork') as span:
    pass

spans = tracer.finished_spans()
someWorkSpan = spans[0]

Documentation

virtualenv env
. ./env/bin/activate
make bootstrap
make docs

The documentation is written to docs/_build/html.

LICENSE

Apache 2.0 License.

Releases

Before new release, add a summary of changes since last version to CHANGELOG.rst

pip install 'zest.releaser[recommended]'
prerelease
release
git push origin master --follow-tags
make docs
python setup.py sdist upload -r pypi upload_docs -r pypi
postrelease
git push
Owner
OpenTracing API
Consistent, expressive, vendor-neutral APIs for distributed tracing and context propagation
OpenTracing API
Python most simple|stupid programming language (MSPL)

Most Simple|Stupid Programming language. (MSPL) Stack - Based programming language "written in Python" Features: Interpretate code (Run). Generate gra

Kirill Zhosul 14 Nov 03, 2022
Read and write life sciences file formats

Python-bioformats is a Python wrapper for Bio-Formats, a standalone Java library for reading and writing life sciences image file formats. Bio-Formats

CellProfiler 106 Dec 19, 2022
Prometheus exporter for Spigot accounts

SpigotExporter Prometheus exporter for Spigot accounts What it provides SpigotExporter will output metrics for each of your plugins and a cumulative d

Jacob Bashista 5 Dec 20, 2021
Python AVL Protocols Server for Codec 8 and Codec 8 Extended Protocols

pycodecs Package provides python AVL Protocols Server for Codec 8 and Codec 8 Extended Protocols This package will parse the AVL Data and log it in hu

Vardharajulu K N 2 Jun 21, 2022
Mini-calculadora escrita como exemplo para uma palestra relâmpago sobre `git bisect`

Calculadora Mini-calculadora criada para uma palestra relâmpado sobre git bisect. Tem até uma colinha! Exemplo de uso Modo interativo $ python -m calc

Eduardo Cuducos 3 Dec 14, 2021
Tiling manager which runs on top of EWMH window managers.

PyTyle is an extremely versatile and extensible tiling manager that is meant to be used on top of EWMH window managers. Its feature set was modeled af

55 Jul 29, 2021
CountdownTimer - Countdown Timer For Python

Countdown Timer This python script asks for the user time (input) in seconds, an

Arinzechukwu Okoye 1 Jan 01, 2022
Pardus-flatpak-gui - A Flatpak GUI for Pardus

Pardus Flatpak GUI A GUI for Flatpak. You can run, install (from FlatHub and fro

Erdem Ersoy 2 Feb 17, 2022
Here is my Senior Design Project that I implemented to graduate from Computer Engineering.

Here is my Senior Design Project that I implemented to graduate from Computer Engineering. It is a chatbot made in RASA and helps the user to plan their vacation in the Turkish language. In order to

Ezgi Subaşı 25 May 31, 2022
Trashselected - Plugin for fman.io to move files that has been selected in fman to trash

TrashSelected Plugin for fman.io to move files that has been selected in fman to

1 Feb 04, 2022
TinyBar - Tiny MacOS menu bar utility to track price dynamics for assets on TinyMan.org

📃 About A simple MacOS menu bar app to display current coins from most popular Liquidity Pools on TinyMan.org

Al 8 Dec 23, 2022
The-White-Noise-Project - The project creates noise intentionally

The-White-Noise-Project High quality audio matters everywhere, even in noise. Be

Ali Hakim Taşkıran 1 Jan 02, 2022
:art: Diagram as Code for prototyping cloud system architectures

Diagrams Diagram as Code. Diagrams lets you draw the cloud system architecture in Python code. It was born for prototyping a new system architecture d

MinJae Kwon 27.5k Jan 04, 2023
Dotfiles & list of programs

dotfiles & list of programs So I wanted to just backup my most used files. I have a bad habit, sometimes I get tired of a distro and do a wipe and sta

2 Sep 04, 2022
Tools I'm building in order to help my investments decisions

b3-tools Tools I'm building in order to help my investments decisions. Based in the REITs I've in my personal portifolio I ran a script that scrapy th

Rafael Cassau 2 Jan 21, 2022
Ingest openldap data into bloodhound

Bloodhound for Linux Ingest a dumped OpenLDAP ldif into neo4j to be visualized in Bloodhound. Usage: ./ldif_to_neo4j.py ./sample.ldif | cypher-shell -

Guillaume Quéré 71 Nov 09, 2022
Jarvis Python BOT acts like Google-assistance

Jarvis-Python-BOT Jarvis Python BOT acts like Google-assistance Setup Add Mail ID (Gmail) in the file at line no 82.

Ishan Jogalekar 1 Jan 08, 2022
This repository contains Python Projects for Beginners as well as for Intermediate Developers built by Contributors.

Python Projects {Open Source} Introduction The repository was built with a tree-like structure in mind, it contains collections of Python Projects. Mo

Gaurav Pandey 115 Apr 30, 2022
A tool that automatically creates fuzzing harnesses based on a library

AutoHarness is a tool that automatically generates fuzzing harnesses for you. This idea stems from a concurrent problem in fuzzing codebases today: large codebases have thousands of functions and pie

261 Jan 04, 2023
Cross-Encoder-with-Bi-Encoder를 활용한 WebPage 데모

Retrieval_Streamlit_Demo Cross-Encoder-with-Bi-Encoder를 활용한

5 Dec 29, 2021