Constrained Logistic Regression - How to apply specific constraints to logistic regression's coefficients

Overview

Constrained Logistic Regression

Sample implementation of constructing a logistic regression with given ranges on each of the feature's coefficients (via clogistic library).

The Data

We will use the processed version of telco customer churn data from Kaggle. The data can be downloaded here.

Steps

Define the constraints

For example:

# define constraints as dataframe
import numpy as np
constraint_df = pd.DataFrame(data=[
                                   ['gender',-np.inf,np.inf],
                                   ['SeniorCitizen',-np.inf,np.inf],
                                   ['Partner',-np.inf, 0],
                                   ['Dependents',-np.inf,0],
                                   ['tenure',-np.inf,0],
                                   ['PhoneService',-np.inf,0],
                                   ['PaperlessBilling',-np.inf,np.inf],
                                   ['MonthlyCharges',-np.inf,np.inf],
                                   ['intercept',-np.inf,np.inf]],
                             columns=['feature','lower_bound','upper_bound'])
constraint_df
|    | feature          |   lower_bound |   upper_bound |
|---:|:-----------------|--------------:|--------------:|
|  0 | gender           |          -inf |           inf |
|  1 | SeniorCitizen    |          -inf |           inf |
|  2 | Partner          |          -inf |             0 |
|  3 | Dependents       |          -inf |             0 |
|  4 | tenure           |          -inf |             0 |
|  5 | PhoneService     |          -inf |             0 |
|  6 | PaperlessBilling |          -inf |           inf |
|  7 | MonthlyCharges   |          -inf |           inf |
|  8 | intercept        |          -inf |           inf |

Model training via clogistic

# train using clogistic
from scipy.optimize import Bounds
from clogistic import LogisticRegression as clLogisticRegression

lower_bounds = constraint_df['lower_bound'].to_numpy()
upper_bounds = constraint_df['upper_bound'].to_numpy()
bounds = Bounds(lower_bounds, upper_bounds)

cl_logreg = clLogisticRegression(penalty='none')
cl_logreg.fit(X_train, y_train, bounds=bounds)

Retrieve the model coefficients

# coefficients as dataframe
cl_coef = pd.DataFrame({
    'feature': df.drop(columns='Churn').columns.tolist() + ['intercept'],
    'coefficient': list(cl_logreg.coef_[0]) + [cl_logreg.intercept_[0]]
})

cl_coef
|    | feature          |   coefficient |
|---:|:-----------------|--------------:|
|  0 | gender           |   0.0184168   |
|  1 | SeniorCitizen    |   0.506692    |
|  2 | Partner          |   3.85603e-09 |
|  3 | Dependents       |  -0.35721     |
|  4 | tenure           |  -0.0557211   |
|  5 | PhoneService     |  -0.796233    |
|  6 | PaperlessBilling |   0.398824    |
|  7 | MonthlyCharges   |   0.033197    |
|  8 | intercept        |  -1.36086     |
Visualizing Yolov5's layers using GradCam

YOLO-V5 GRADCAM I constantly desired to know to which part of an object the object-detection models pay more attention. So I searched for it, but I di

Pooya Mohammadi Kazaj 200 Jan 01, 2023
Learning to Prompt for Vision-Language Models.

CoOp Paper: Learning to Prompt for Vision-Language Models Authors: Kaiyang Zhou, Jingkang Yang, Chen Change Loy, Ziwei Liu CoOp (Context Optimization)

Kaiyang 679 Jan 04, 2023
Official pytorch code for "APP: Anytime Progressive Pruning"

APP: Anytime Progressive Pruning Diganta Misra1,2,3, Bharat Runwal2,4, Tianlong Chen5, Zhangyang Wang5, Irina Rish1,3 1 Mila - Quebec AI Institute,2 L

Landskape AI 12 Nov 22, 2022
When are Iterative GPs Numerically Accurate?

When are Iterative GPs Numerically Accurate? This is a code repository for the paper "When are Iterative GPs Numerically Accurate?" by Wesley Maddox,

Wesley Maddox 1 Jan 06, 2022
A list of awesome PyTorch scholarship articles, guides, blogs, courses and other resources.

Awesome PyTorch Scholarship Resources A collection of awesome PyTorch and Python learning resources. Contributions are always welcome! Course Informat

Arnas Gečas 302 Dec 03, 2022
Swin-Transformer is basically a hierarchical Transformer whose representation is computed with shifted windows.

Swin-Transformer Swin-Transformer is basically a hierarchical Transformer whose representation is computed with shifted windows. For more details, ple

旷视天元 MegEngine 9 Mar 14, 2022
MDMM - Learning multi-domain multi-modality I2I translation

Multi-Domain Multi-Modality I2I translation Pytorch implementation of multi-modality I2I translation for multi-domains. The project is an extension to

Hsin-Ying Lee 107 Nov 04, 2022
Implementation of STAM (Space Time Attention Model), a pure and simple attention model that reaches SOTA for video classification

STAM - Pytorch Implementation of STAM (Space Time Attention Model), yet another pure and simple SOTA attention model that bests all previous models in

Phil Wang 109 Dec 28, 2022
《Rethinking Sptil Dimensions of Vision Trnsformers》(2021)

Rethinking Spatial Dimensions of Vision Transformers Byeongho Heo, Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Junsuk Choe, Seong Joon Oh | Paper NAVER

NAVER AI 224 Dec 27, 2022
Team nan solution repository for FPT data-centric competition. Data augmentation, Albumentation, Mosaic, Visualization, KNN application

FPT_data_centric_competition - Team nan solution repository for FPT data-centric competition. Data augmentation, Albumentation, Mosaic, Visualization, KNN application

Pham Viet Hoang (Harry) 2 Oct 30, 2022
Deeper insights into graph convolutional networks for semi-supervised learning

deeper_insights_into_GCNs Deeper insights into graph convolutional networks for semi-supervised learning References data and utils.py come from Implem

Davidham3 17 Dec 16, 2022
OpenABC-D: A Large-Scale Dataset For Machine Learning Guided Integrated Circuit Synthesis

OpenABC-D: A Large-Scale Dataset For Machine Learning Guided Integrated Circuit Synthesis Overview OpenABC-D is a large-scale labeled dataset generate

NYU Machine-Learning guided Design Automation (MLDA) 31 Nov 22, 2022
A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron.

The GatedTabTransformer. A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron. C

Radi Cho 60 Dec 15, 2022
202 Jan 06, 2023
Model serving at scale

Run inference at scale Cortex is an open source platform for large-scale machine learning inference workloads. Workloads Realtime APIs - respond to pr

Cortex Labs 7.9k Jan 06, 2023
pytorch implementation of GPV-Pose

GPV-Pose Pytorch implementation of GPV-Pose: Category-level Object Pose Estimation via Geometry-guided Point-wise Voting. (link) UPDATE A new version

40 Dec 01, 2022
Mapping Conditional Distributions for Domain Adaptation Under Generalized Target Shift

This repository contains the official code of OSTAR in "Mapping Conditional Distributions for Domain Adaptation Under Generalized Target Shift" (ICLR 2022).

Matthieu Kirchmeyer 5 Dec 06, 2022
A pre-trained language model for social media text in Spanish

RoBERTuito A pre-trained language model for social media text in Spanish READ THE FULL PAPER Github Repository RoBERTuito is a pre-trained language mo

25 Dec 29, 2022
A sketch extractor for anime/illustration.

Anime2Sketch Anime2Sketch: A sketch extractor for illustration, anime art, manga By Xiaoyu Xiang Updates 2021.5.2: Upload more example results of anim

Xiaoyu Xiang 1.6k Jan 01, 2023
Bringing sanity to world of messed-up data

Sanitize sanitize is a Python module for making sure various things (e.g. HTML) are safe to use. It was originally written by Mark Pilgrim and is dist

Alireza Savand 63 Oct 26, 2021